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DAV Indefinite Integrals

[fe)x =F(x) < F'(x)=f (x)
jf(x)dx —F(x)+C
1) ch f (x)dx :cj f (x)dx ; ¢ =constant
2) I[fl(x)+fz(x)_fs(x ) Jdx :Ifl(x)dx +_[f2(x)‘ix __[f3(x)dx

3) | [f @)x ]' =f (&)

https://manara.edu.sy/


https://manara.edu.sy/

indefinite integrals and the Substitution method

e § THEOREM 6 —The Substitution Rule
If u = gix) is a differentiable function whose range is an interval /, and f is con-
tinuous on [, then
f f(g(x)) - g'(x) dx = f flu) du.
EXAMPLE Find f sec?(5x + 1)-5 dx

Solution We substitute ¥ = 5x + 1 and du = 5 dx. Then,

/secz[ﬁx + 1)-5dx =f sec? u du Let u = 5x + 1, du = 5 dx.

I
=tanu + C i—Jhl]l.'a = sec u
an

= tan(5x + 1) + C. Substitute 5x + 1 for u. |
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indefinite integrals and the Substitution method

i:'ul.i_.:'n.il .
I — . EKAM FILE / II COS _]_‘3 Ef_.‘l_‘

]12 cos x° dx =/ cos x>« x2 dx

]_ |.-'..'|. = .'|.":- I'.'Il'.' = ..a.'u-l I'.'I.'l.'.
= f cos i " = du

3‘ (] .l,-'_'t ) du = .'I.': ax.

_1/
—jjmsudu

1 . .
= i sinu + C Integrate with respect to u.
1 . |
= i sinx” + C Replace u by 1. ]
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EXAMPLE

Evaluate / NV 2x + 1 dx.

indefinite integrals and the Substitution method

Solution Our previous experience with the integral in Example 2 suggests the substitu-

tion u = 2x + 1 with du = 2 dx. Then

Vax + lcir=%\uf;du.

However, in this example the integrand contains an extra factor of x that multiplies the term
V2x + 1. To adjust for this, we solve the substitution equation u = 2x + 1 for x to obtain

x = (u — 1)/2, and find that

xV2x + ldx = %[u — 1]-%\/5.51'“.

The integration now becomes

/r'ul'x-l— ldx=£l—1./(u — 1]\@du=%f{u — Du'? du

= i/(um — u'?) du

1{2 2
L2 s5p _ 2 ap
4(51,15 3M ) + C

15 s _ 15 32
L@+ - L@+ D2+ C

Substtute.

Muluply terms.

Integrate.

Replaceuby 2r + 1. W
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Evaluate

Substitute u = 7% + 1.

-/ Z?Ef{

=fu“fu du

=2 -+
= 3,2
5P+ C

= %{f + 13 +C

In the form | " du

[ntegrate.

Replace u by z° +
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dx 2(u — 1) du |
— —_— - I, —_— | -
(1 4 ﬁ)3 P =1+ Vx du= o~ dax:

) 5 dry = 2Vx du = 2u — 1) du
= — — — | du
/(Hz H3)
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———+—_J+C
I I
_l—j2u+c
2
1 —2(1 + V)
= +C
(1+ Vx)?
1 + 2Vx
= ( — ) []
(1+ Vx)?
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EXAMPLE

cos(A + B) = cosAcosB — sinA sin B
sin(4 + B) = sindAcosB + cosAsinB

Evaluate the integral

[{cu:-; xsin 2y + sinxcos 2x) dx.

/ (cos x sin 2x + sin x cos 2x) dx = / (sin (x + 2x)) dx

= / sin 3x dx

=/% sin u du w = 3x, di

|
= —=cos 3x + C. Iable

3

5.1

. Formula 6
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[Zv Trigonometric Integrals

o Ar— . Odd Convert to cosines  Save for du

- -

I sin** 1 x cos" x dx ,(sln- x)* cos” x sin x dx ‘ (1 — cos® x)* cos” x sin x dx

Odd Convert to sines Save for du

‘. . e o
sin” x cos* ! x dx = J (sin™ x)(cos® x)* cos x dx = ’ (sin” x)(1 — sin® x)* cos x dx

EXAMPLE Evaluate

/ sin x cos® x dx.
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Solution This is an example of Case 1.

f:ﬂsin.:a x cost x dx :/~.='.i|13::-:u:u:f;1 x sin x dx
=/ (1 — cos® x)(cos® x)(—d (cos x))

=/l{] — )12 )(—du)

/{u‘* — ) du
5 1

_cos’x  cos’x

m 15 odd.

sin x dx = —d (cos x)

Multiply terms.
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EXAMPLE Evaluate

/ cos® x dx.

fmsSxir =/cu:;“ x cos X dx =/ (1 — sin” x)? d(sin x) cos x dx = d (sin x)

=/ {] — H:}E du i = SN X

=/ (1 — 2 + o) du Square | — .

_ . _ 23,1 — cin v 2 i3 1.5
= u 311 +5u5+£'—51n3. 351n.t+551nx+{:' N
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[Z\y Trigonometric Integrals

8Li_aJl Solution
/[EI]‘I"'I&T.T =/[an3x-mn1,rd_r =/[an3x-(sec3_r —1)d

tan” x sec” x dx — f tan® x dx

=/ tan® x sec? x dx —f(secz.r — 1) dx
=/[an3xsec3_r elx —fsecz x dx -I—/a’_t

i = lan x, du = sec? x dx

/uz du = %uj + .

The remaining integrals are standard forms, so

EXAMPLE Evaluate

tan® x dx.

In the first integral, we let

and have

/tan“xn’.t = %[m‘r"r —tanx + x + C.
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[Z\y Trigonometric Integrals

ﬂ’L’I”J' EXAMPLE ~ Evaluate
f tan® x sec” x dx.
Solution
f{mrﬁ x)(sec* x) dx =/I{lan" a1 + tan® x)(sec? x) dx seciy = | + tan®x

=/{[an" x + tan® x)(sec? x) dx

=/I{[an“ x)(sec? x) dx +/-I[t:]r|ﬁ x)(sec” x) dx

B ' 4 P ﬁ H_ M = tan x.
—/H el +fu du = 5 7 + C du = sec? x dx

tan® x  tan’ x
=22+ o
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DAV Trigonometric Integrals

a;u_a_jl
Products of Sines and Cosines

The integrals

/ S1n mx sin nx dx, f SIN #x cos nx dx, and / COS mx cos nx dx

sin mx sin nx = %(cos[(m — n)x] — cos[(m + n)x])
sin mx cos nx = %(sin[(m — n)x] + sin[(m + n)x])

COS MX COS NX = %(cos[(m — n)x] + cos[(m + n)x])
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EXAMPLE Evaluate

f SI 3x cos Sx dx.

Solution From Equation (4) withm = 3 and n = 5, we get

fsin 3xcos Sxdx = %f[sin{—h—‘_} + sin 8x | dx

- i—} f (sin 8x — sin 2x)dx

_ Cos 8x 4+ Cos 2x
16 -

+ C.
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Integration of Rational Functions by Partial Fractions

f i :ln‘1+x‘+c
1l+2x
9
f 2z + 37 dx:ln‘1+x2+a:3‘+c
1+ 22 +2°
Fmdj dx
x(x—l)
1 -1 1
=—+

x (x —1)_ x x-1
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1 4 B _AR-D+Bx

Solution =
x(x=-1) x x-1 x(x =1)

A(x =1)+Bx =1 —

v’ -4 = 4=-1

— =

@A+B)x-4=1 = ' 44B=0 B =1

1 -1 1

=—+
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Integration of Rational Functions by Partial Fractions

‘:'J'-’;':'-” 1. Divide when improper: When N(x)/D(x) is an improper fraction (that is,
when the degree of the numerator 1s greater than or equal to the degree of the
denominator), divide the denominator into the numerator to obtain

N [1’) N, (I )
D(x) Dix)

= (a polynomial) +

Linear factors: For each factor of the form (px + g)™. the partial fraction
decomposition must include the following sum of m fractions.
A, A, A

+ _|_ L. + L1y
(px +q)  (px+ q) (px + g)"

Quadratic factors: For each factor of the form (ax®> + bx + ¢)*, the partial
[raction decomposition must include the following sum of n fractions.

B.x + C, + B.x + C, + + B x+ C,
ax2 + bx + ¢ (ax?2 + bx + ¢)? (ax? + bx + ¢)
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Integration of Rational Functions by Partial Fractions

- Av—— Find A, B, and C 1n the equation

x—1 _ A N B n C
x+1)7 x+1 x+1D? x+1)°

Solution We first clear fractions:
x—1=Ax+ 1)>+B(x+ 1)+ C.

Substituting x = —1 shows C = —2. We then differentiate both sides with respect to x,
obtaining

| = 2A(x + 1) + B.

Substituting x = —1 shows B = 1. We differentiate again to get 0 = 2A, which shows
A = (. Hence,

x-1 2 0
x+ 1 @+ (x+ D
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Solution

1 4. B C 1 Ax(x+D+B(x +1)+Cx°

x*(x+1) x x° x4+l x7(x +1) x (x +1)
Ax (x +D)+B(x +D)+Cx* =1 % - B =1 4 =—1

(4+C)x°+(4+B)x+B =1 = I;:A"'B:O - B=l

x 1 A+C =0 C =1

1 -1 1 1
2 = + '}'+
x (x+1) x x° x+1
J —_f( ,}+ )dr —In|> tl —l+C
X (r +1) - ox +1 X x

8:22 PM
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Integration of Rational Functions by Partial Fractions

B . x4+ 4x + 1 Jx
(x — D(x + 1I)(x + 3)

x- + 4dx + 1 A + B + C

x—-Dx+Dx+3) x—1 x+1 x+3

X+ dx+1=Ax+ Dx+3)+Bx— Dx+3)+ Clx— Dkx+1)
= A2+ 4x+3) +B(x*+2x—3) + C(x* = 1)
= (A+B+ O+ (4A + 2B)x + 3A — 3B — Q).

Coefficient of x*: A+ B+C=1
Coefficient of x!: 4A + 2B = 4
Coefficient of x": 3A—3B—-C=1

https://manara.edu.sy/


https://manara.edu.sy/

Integration of Rational Functions by Partial Fractions

e A=3,’4',B= 1/2, and C = —1/4. Hence we have

X2+ 4x + 1 | 1 1
/(x—l)(x+1)(x+3}d" /[x—l x+1 ax+3|%

] ]
11n|x—l|+§ln|x l|—11n|x+3|+ﬁ,
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Integration of Rational Functions by Partial Fractions

6x + 7 A B

—_— = + Two terms because (x + 2) i1s squared
x + 2)2 T+ 2 x + 2}2 wo terms becau X ) 1S squarec
6bx +7=Ax+2)+ B Multiply both sides by (x + 2)°.
= Ax + (24 + B)

Equating coefficients of corresponding powers of x gives

A=6 and 2A+ B =12+ B =17, or A=6 and B = —5.

Therefore,

ex+7 . [( 6 5
(x+2)1dx‘/(x+2 (x+2)z)d’”

_ [ _
—6fx+2 /(x+2)3cf_r

=6In|x + 2| +5(x + 2" + C.

6x + 7

(x + 2)° .

https://manara.edu.sy/


https://manara.edu.sy/

2x

2 _ 3 _ 2 —

2} — 4’ —x-3 _, . 5¢—3 S 3)2{! Wom oxem
IE—ZI—?) IE-ZI—:S 2x7 — 4dx — 6x — 3
5x — 3

/Zx—4x“—x—3dx_/2xdx+/ 5x — 3

X — x* — 2x —3
_ 2 3
—fodx+/I+ldx+fx_

=x>+2In|x+ 1| +3In|x - 3| + C [
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A o —ZI'I"‘:I'
[
(> + 1)x—1

~2x+4 _Ax+B, C . D

X+ Dx—-1> x¥x*+1 x—1 (x—-17*
Clearing the equation of fractions gives
“2x+4=Ax+B)x—1P2+Cx—Dx*+1) + D>+ 1)
= A+ Ox+ (-2A + B — C + D)x*
+A—2B+ Cx +(B— C+ D).
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Integration of Rational Functions by Partial Fractions

Equating coefficients of like terms gives

Coefficients of x°: 0=A+C

Coefficients of x’: 0=—-2A+B—-C+ D
Coefficients of x': —-2=A—-2B+ C
Coefficients of x"; 4=B—-—C+D

We solve these equations simultaneously to find the values of A, B, C, and D:

—4 = —2A, A=2 Subtract fourth equation from second.
C=—-A=-2 From the first equation
B=A+C+ 2)f2 =1 From the third equation and C = —A
D=4—-B+(C=1. From the fourth equation
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Integration of Rational Functions by Partial Fractions

We substitute these values into Equation (2), obtaining

x4+ 4 2+ 1 2 1
- = - - :
R+ Dx—172 2+1 x—1 (x—1)

Finally, using the expansion above we can integrate:

—2x + 4 _f{2x+1 2 1
/(xz+l)(x—]}3dx_/(x3+l x—l+(x—1)3)dx

2 1 2 l
/(f+1 2+1 x—1 (x—])l)x

1
x—1

=In(x*+ 1) +tan'x—2In|x — 1| — +C. H
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Thank you for your attention
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