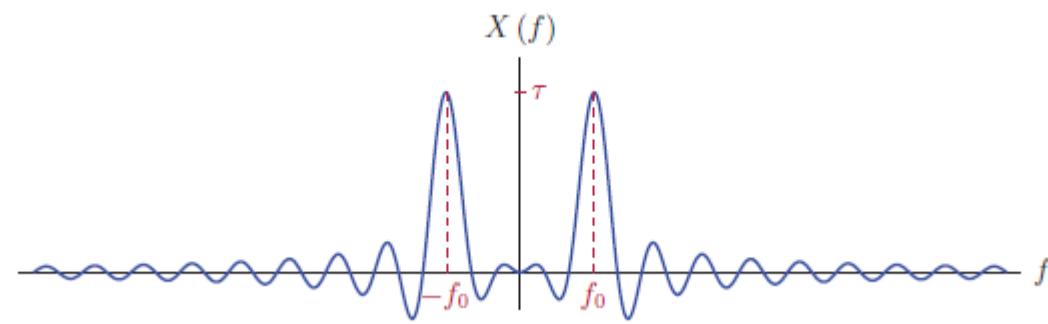


CEDC403: Signals and Systems

Lecture Notes 1 & 2: Signal Representation and Modeling



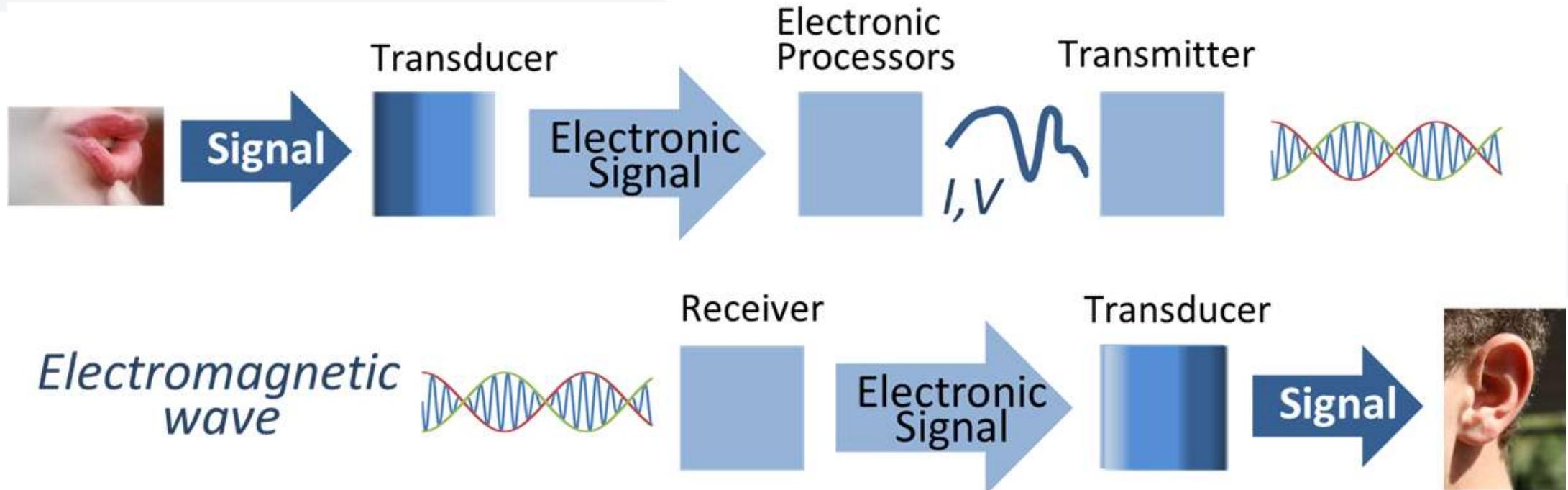
Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Robotics and Intelligent Systems
Manara University

Chapter 1

Signal Representation and Modeling

1. Signals and Systems
2. Continuous-Time Signals
3. Basic building blocks for continuous-time signals
4. Discrete-Time Signals
5. Basic building blocks for discrete-time signals

Introduction



- The broadcast example (a commentator in a radio broadcast studio) includes **acoustic, electrical and electromagnetic signals**.

1. Signals and Systems

- A **signal** is a function of one or more variables that conveys information about some (usually physical) phenomenon.
- **independent variable** = time, space, ...
- **dependent variable** = the function value itself.
- Some examples of signals include:
 - a voltage or current in an electronic circuit.
 - the position, velocity, or acceleration of an object.
 - a force or torque in a mechanical system.
 - a flow rate of a liquid or gas in a chemical process.
 - a digital image, digital video, or digital audio.

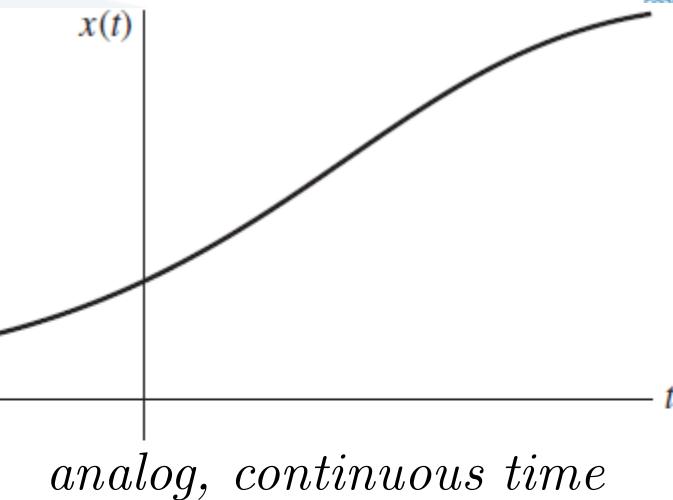
Classification of Signals

- **Continuous-time and discrete-time**

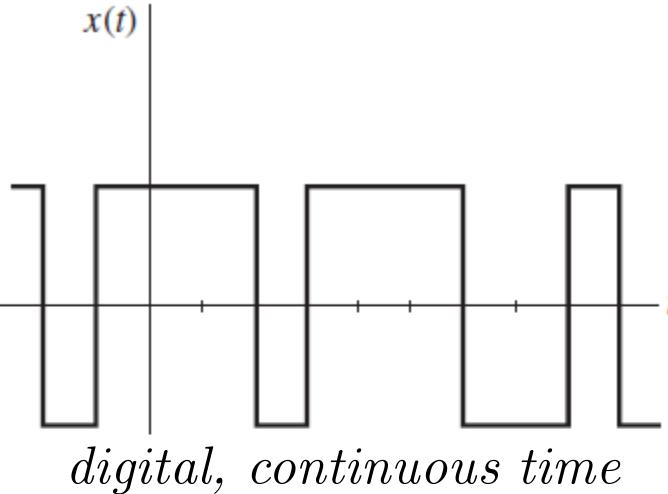
- A **continuous-time** (CT) signal is a signal that is specified for **every value** of time t .
- A **discrete-time** (DT) signal is a signal that is specified only at **discrete values** of t .

- **Analog and digital signals**

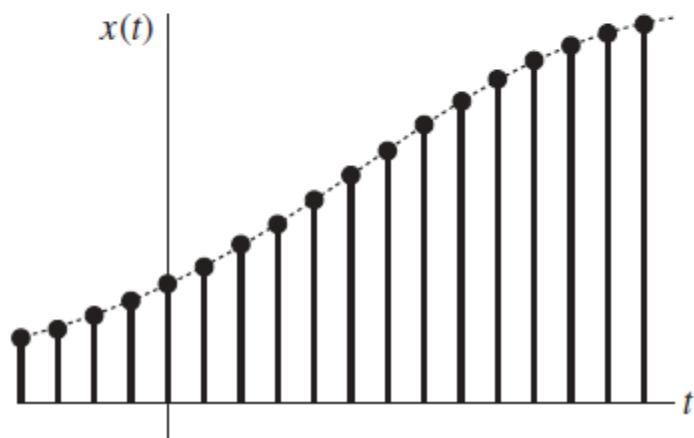
- An **Analog** signal is a signal whose amplitude can take on **any value** in a continuous range.
- A **digital** signal is a signal whose amplitude can take on **only a finite number** of values.



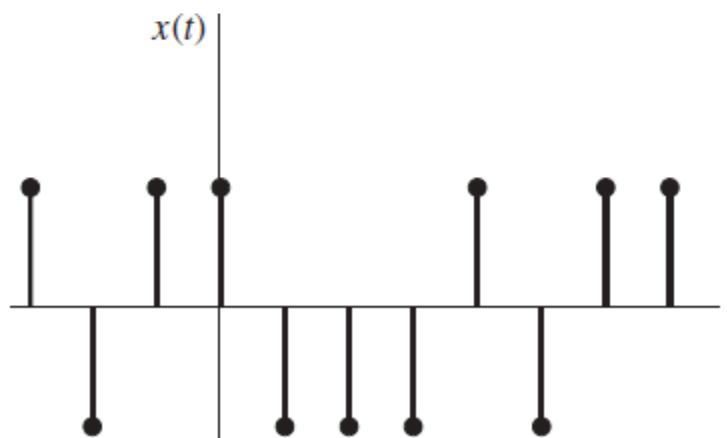
analog, continuous time



digital, continuous time



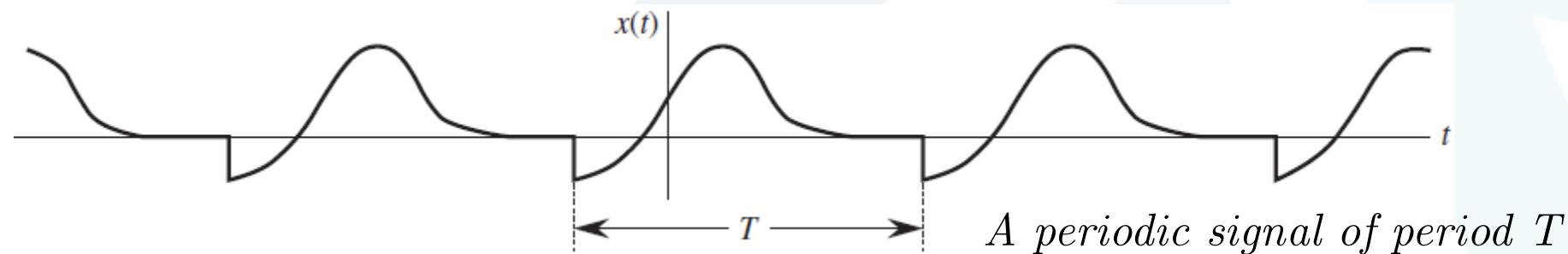
analog, discrete time



digital, discrete time

▪ Periodic and Nonperiodic Signals

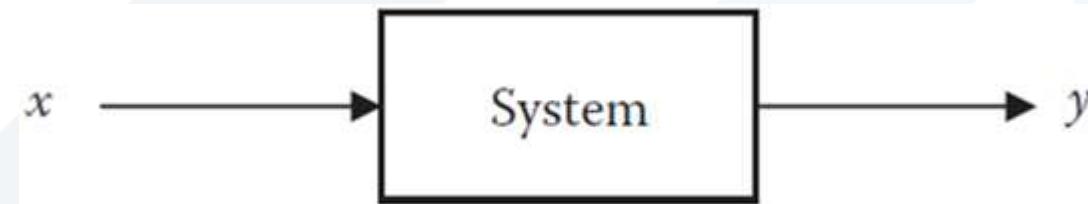
- A **periodic signal** is one that repeats itself. A CT signal $x(t)$ is said to be **periodic with period T** if $x(t) = x(t + T)$ for all $t \in R$. Likewise, a DT signal $x[n]$ is said to be **periodic with period N** if $x[n] = x[n + N]$ for all $n \in Z$.
- A signal is **aperiodic** if it is **not periodic**.



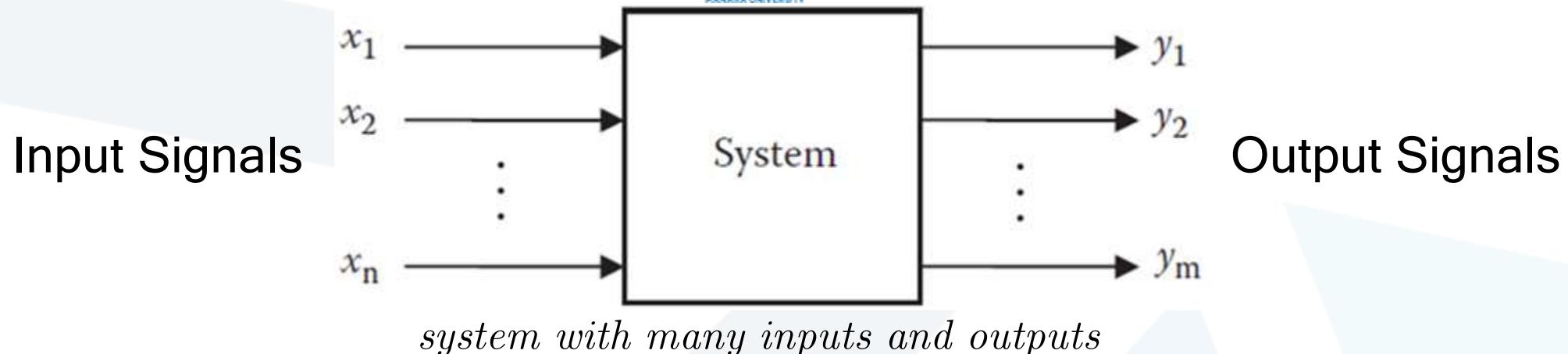
▪ Deterministic or random signals

- A signal whose physical description is known completely, in either a **mathematical form** or a **graphical form**, is a **deterministic signal**.

- A signal whose values cannot be predicted precisely but are known only in terms of **probabilistic** description, such as **mean** value or **mean-squared** value, is a **random signal**.
- **Energy and power signals**
 - A signal with **finite energy** is an **energy signal**, and a signal with **finite** and **nonzero power** is a **power signal**.
- A **system** is an entity that processes one or more input signals in order to produce one or more output signals.



system with single-input and single-output (SISO)



Classification of Systems

- **Linear and nonlinear systems**
- **Time-Varying and Time-Invariant Systems**
 - A **time-varying system** is one whose parameters vary with time.
 - In a **time-invariant system**, a time shift (advance or delay) in the input signal leads to the time shift in the output signal.

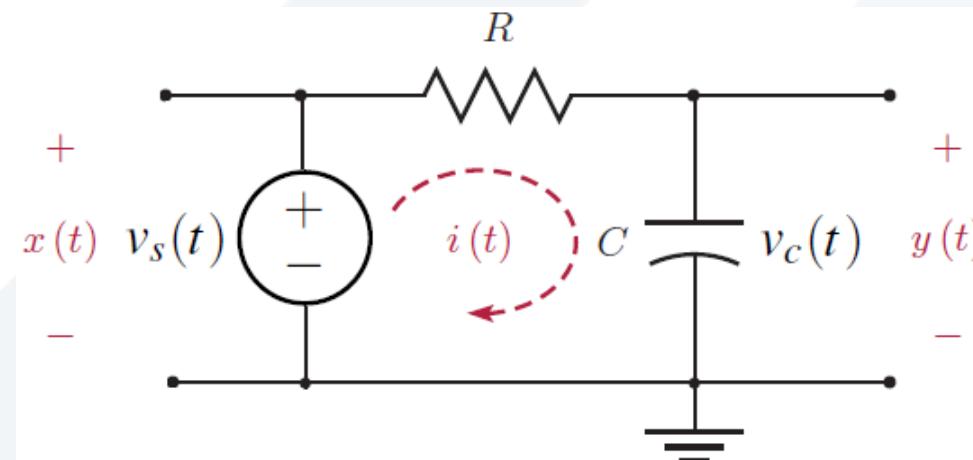
- **Memoryless (static) and with memory (dynamic) systems**
 - A **memoryless system** is one in which the current output depends only on the current input; it does not depend on the **past** or **future** inputs.
 - A **system with memory** is one in which the current output depends on the past and/or future input.
- **Causal and noncausal systems**
 - A **causal system** is one whose **present response** does not depend on the **future** values of the input.
- **Continuous-time and discrete-time systems**
 - A **CT system** is a system whose **inputs** and **outputs** are **CT signals**.
 - A **DT system** is a system whose **inputs** and **outputs** are **DT signals**.

- If a CT signal is sampled, the resulting signal is a DT signal. We can process a CT signal by processing its samples with a DT system.
- **Analog and digital systems**
 - **Analog system** is a system whose **inputs** and **outputs** are **analog signals**.
 - **Digital system** is a system whose **inputs** and **outputs** are **digital signals**.
- **Invertible and noninvertible systems**
 - An **invertible system** when we can **obtain** the **input** $x(t)$ **back** from the corresponding **output** $y(t)$ by some operation.
- **Stable and unstable systems**
 - A system is said to be **stable** if every **bounded input** applied at the input terminal results in a **bounded output**.

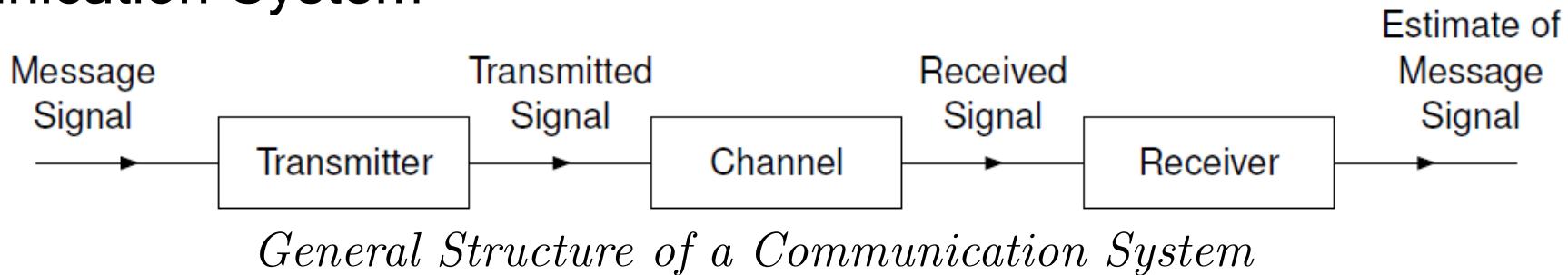
- This type of stability is also known as the stability in the **BIBO** (bounded-input/bounded-output) sense.

Examples of Systems:

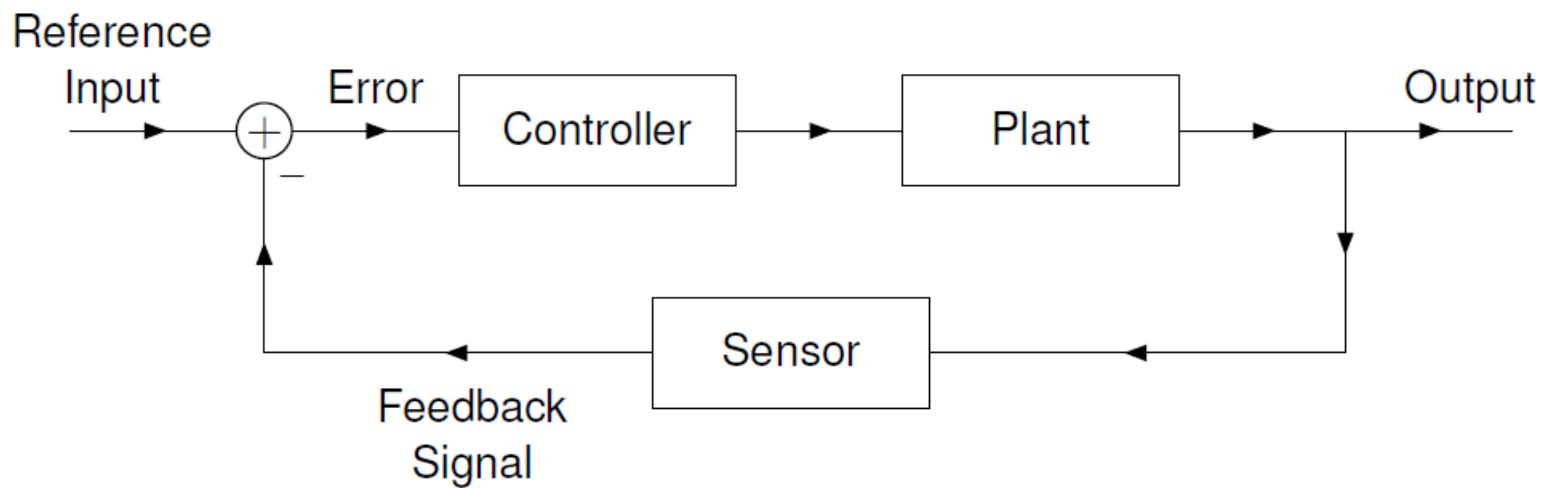
- One very basic system is the resistor-capacitor (RC) network. Here, the input would be the source voltage v_s and the output would be the capacitor voltage v_c .



■ Communication System

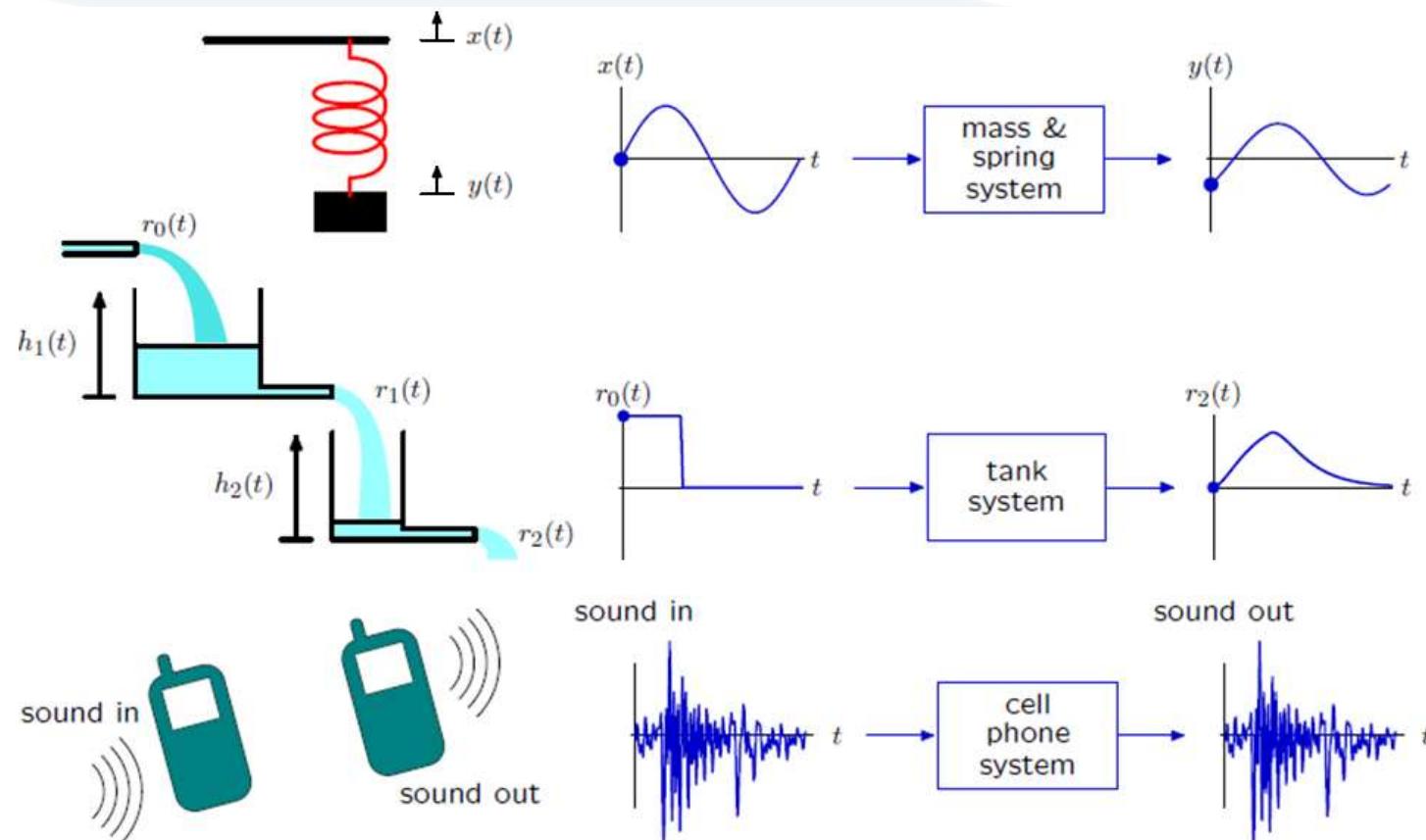


■ Feedback Control System



General Structure of a Feedback Control System

- The Signals and Systems approach has broad application: **electrical, mechanical, optical, acoustic, biological, financial, ...**

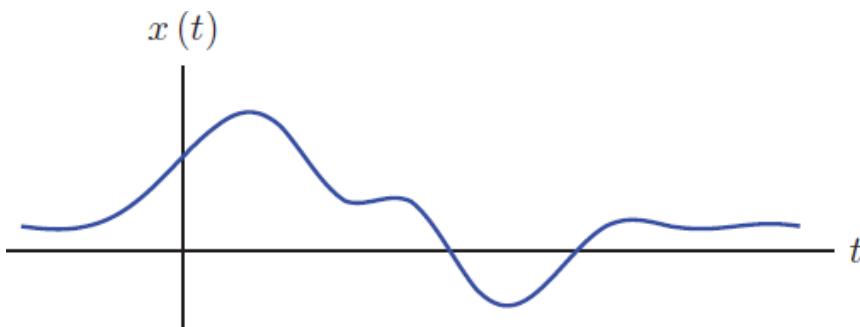
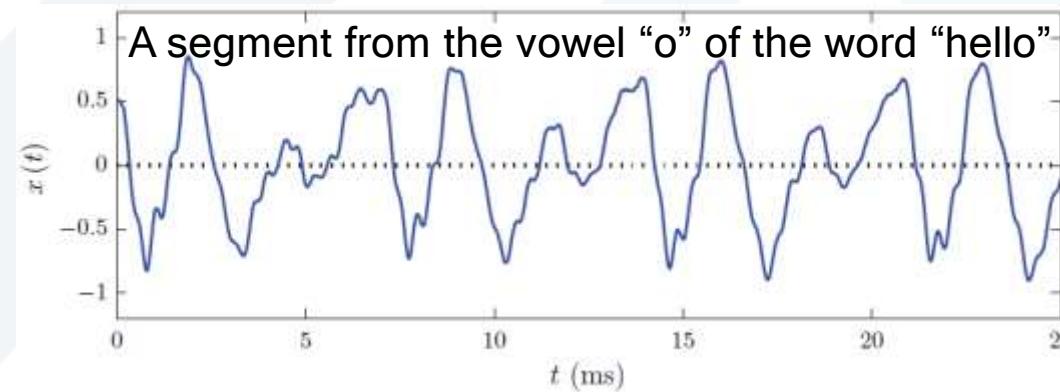


Mathematical Modeling of Signals

- Understand the characteristics of the signal in terms of its behavior in time and in terms of the frequencies it contains (**signal analysis**).
- Develop methods of creating signals with desired characteristics (**signal synthesis**).
- Understand how a system responds to a signal and why (**system analysis**).
- Develop methods of constructing a system that responds to a signal in some prescribed way (**system synthesis**).
- The **mathematical model** for a signal is in the form of a **formula, function, algorithm** or a **graph** that approximately describes the time variations of the physical signal.

2. Continuous-Time Signals

- Consider $x(t)$, a **mathematical function** of time chosen to approximate the strength of the physical quantity at the time instant t .
- The signal $x(t)$, is referred to as a **continuous-time signal** or an **analog signal**. t is the **independent variable**, and x is the **dependent variable**.

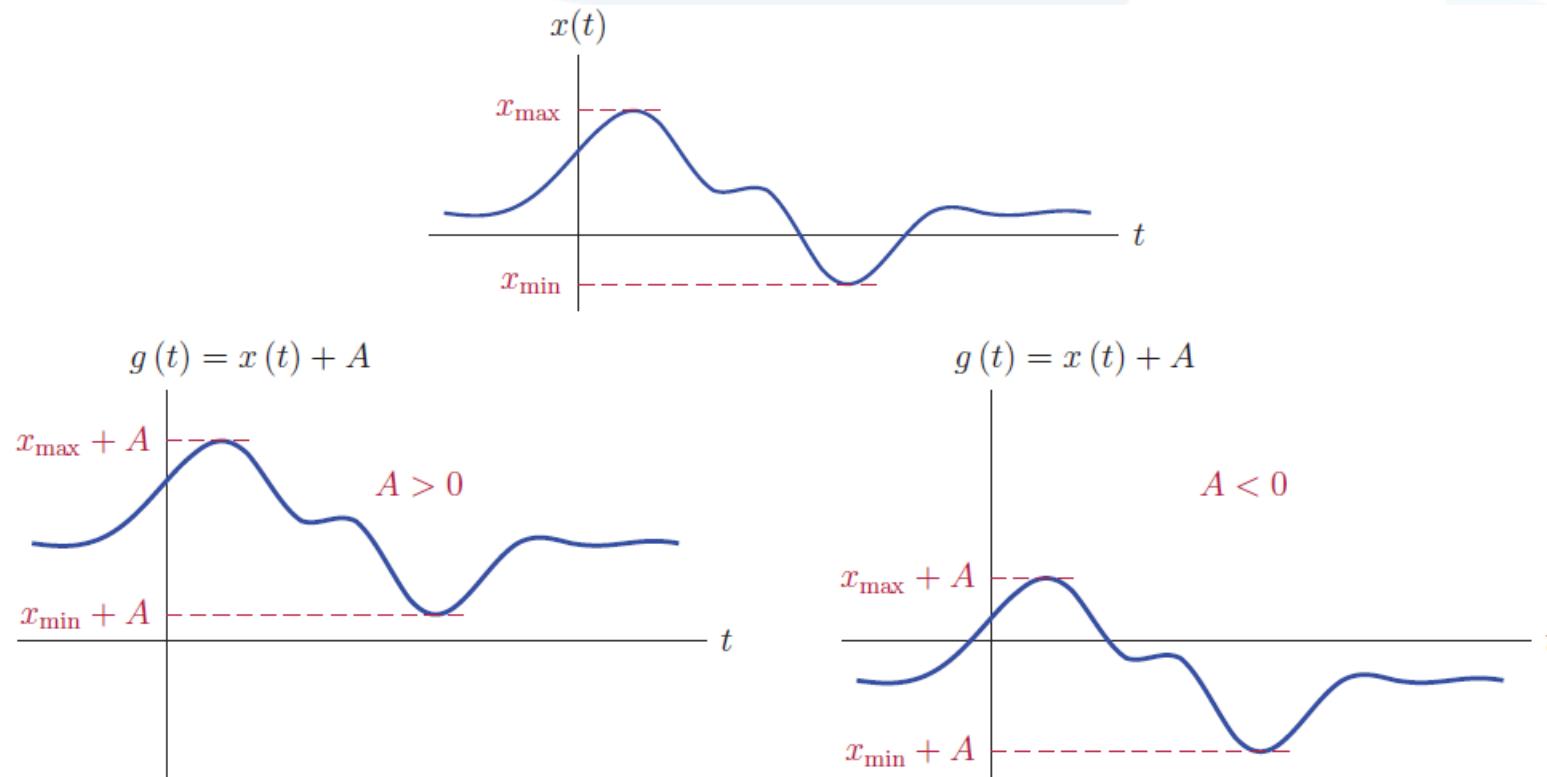


- Some signals can be described **analytically**. For ex., the function $x(t) = 5\sin(12t)$, or by segments as:

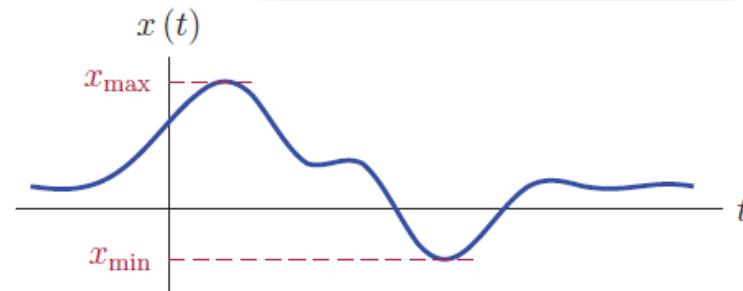
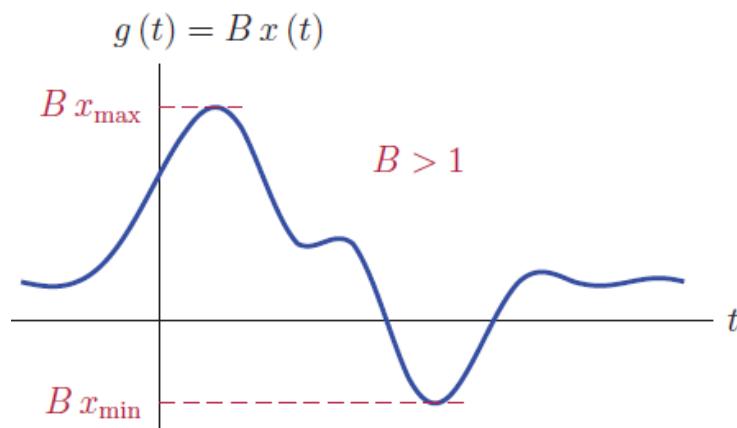
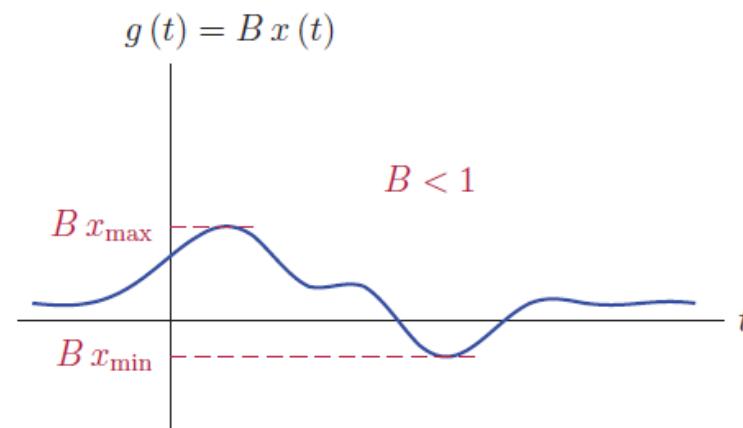
$$x(t) = \begin{cases} e^{-3t} - e^{-5t}, & t \geq 0 \\ 0, & t < 0 \end{cases}$$

Signal operations

- **Amplitude shifting** maps the input signal x to the output signal g as given by $g(t) = x(t) + A$, where A is a real number.

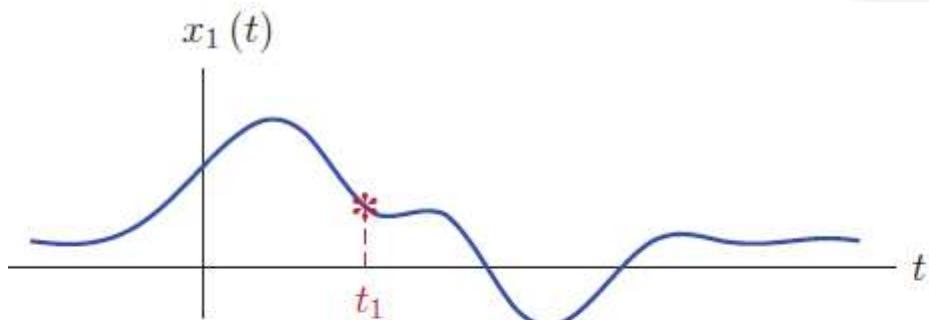
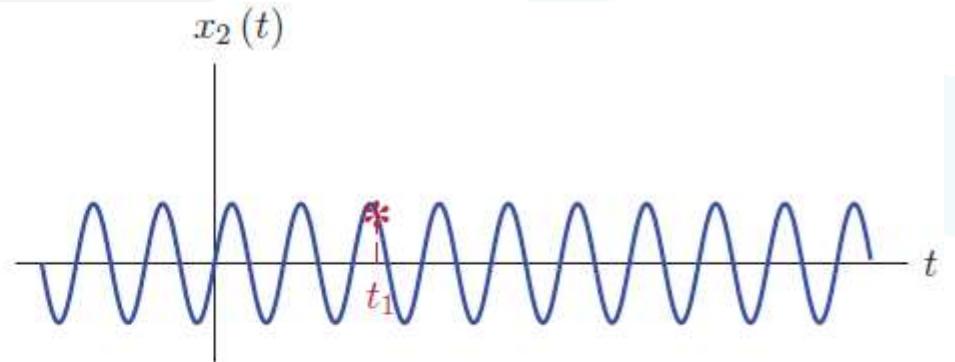
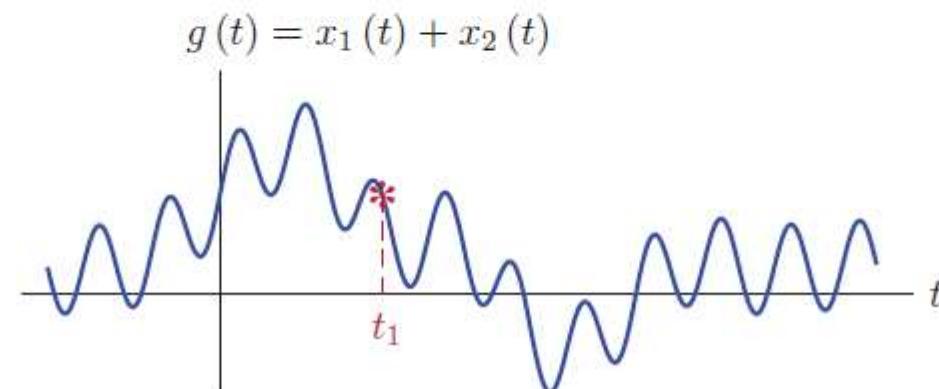


- **Amplitude scaling** maps the input signal x to the output signal g as given by $g(t) = Bx(t)$, where B is a real number.
- Geometrically, the output signal g is **expanded/compressed** in amplitude.

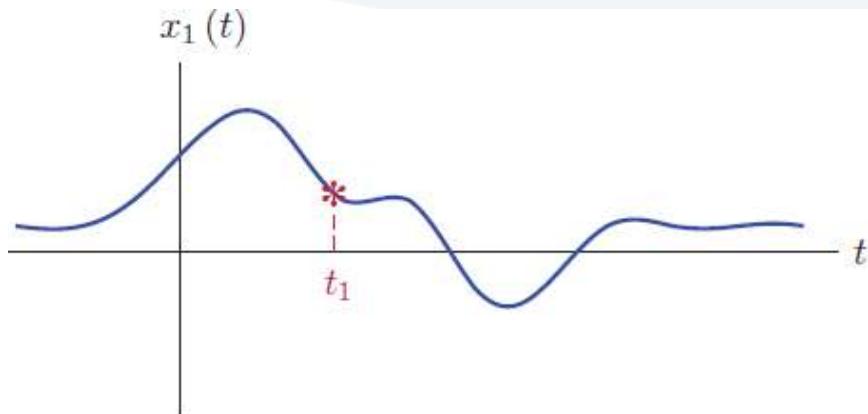
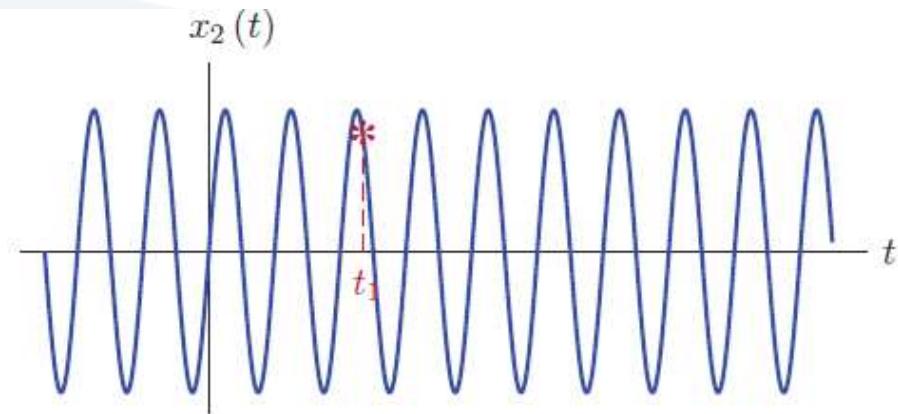
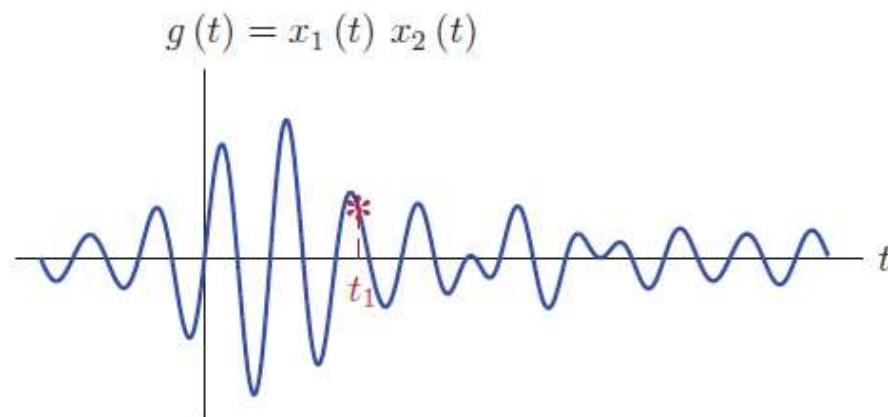


- **Addition and Multiplication** of two signals

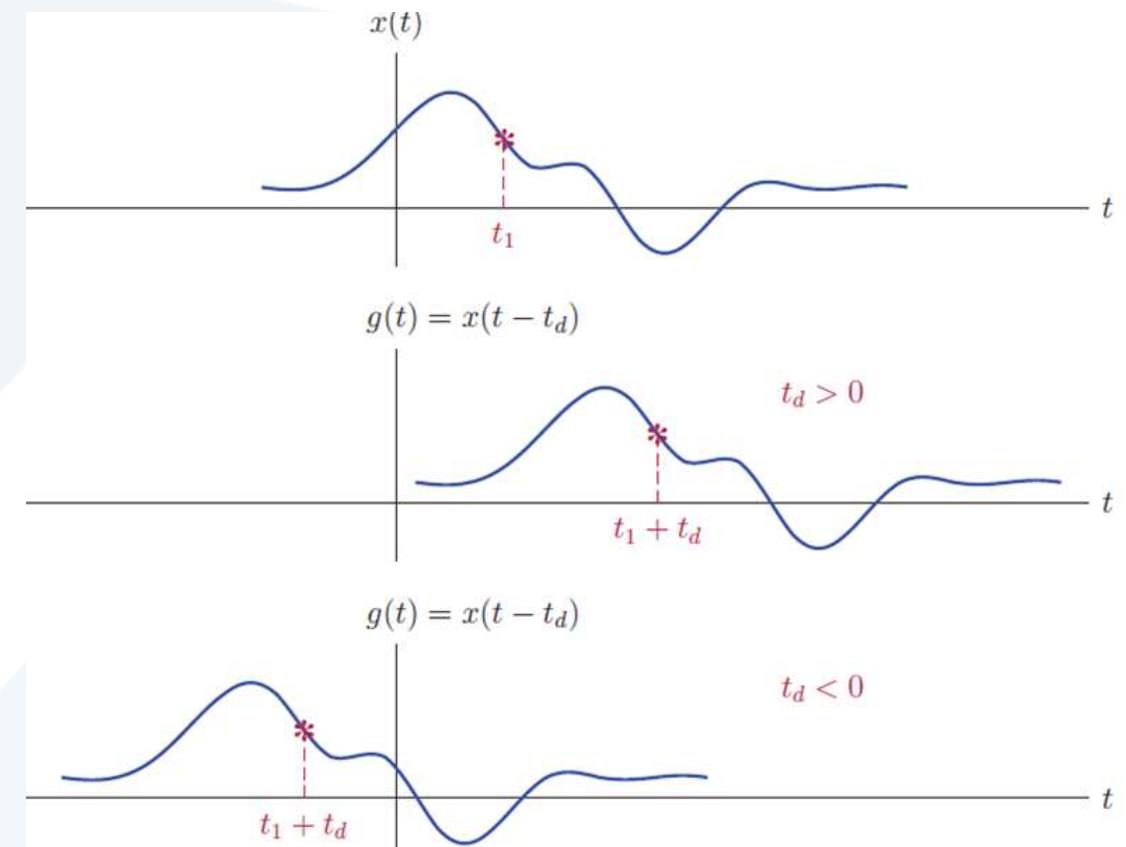
Addition of two signals is accomplished by adding the amplitudes of the two signals at each time instant. $g(t) = x_1(t) + x_2(t)$.



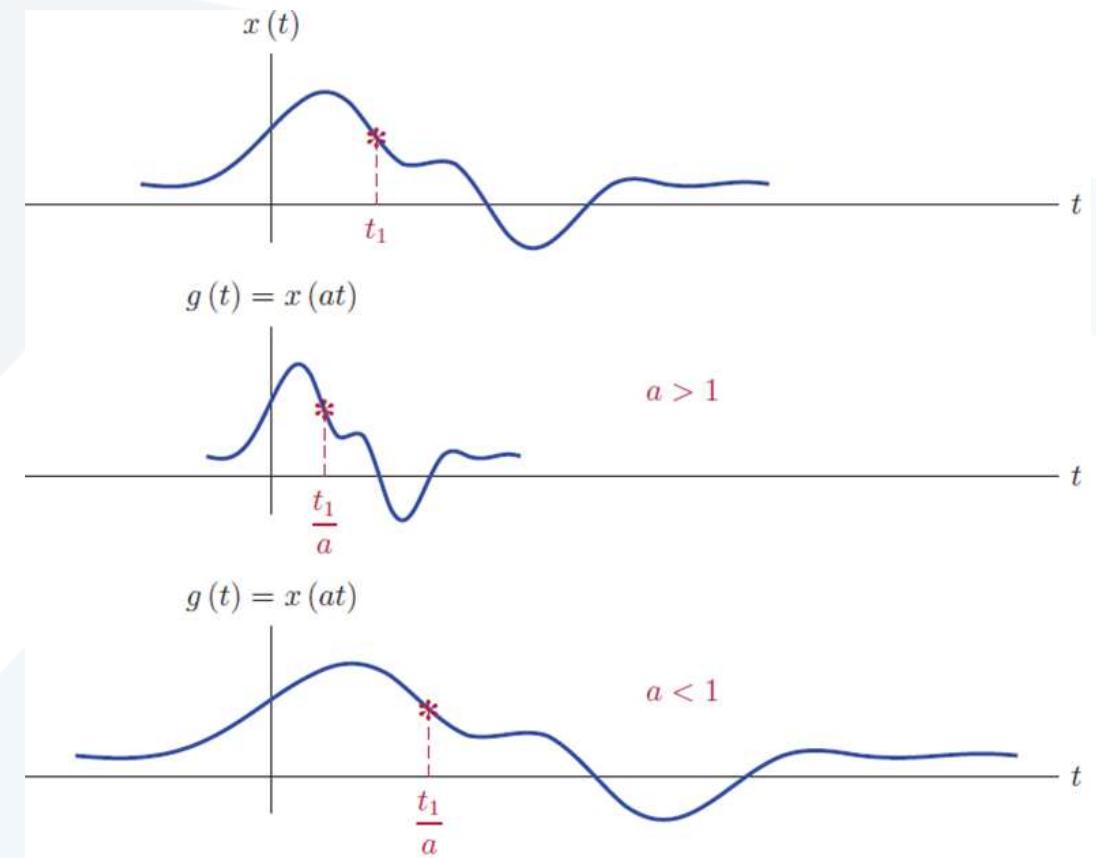
Multiplication of two signals is accomplished by multiplying the amplitudes of the two signals at each time instant. $g(t) = x_1(t) \cdot x_2(t)$.



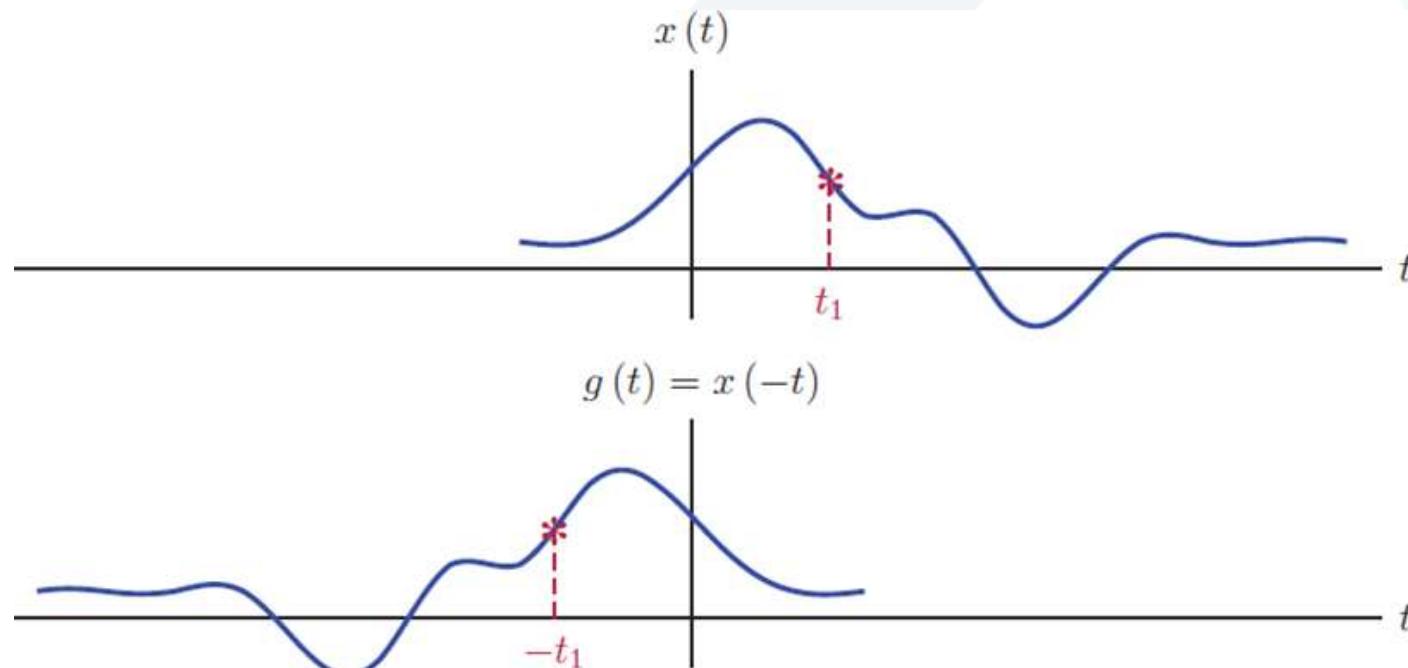
- **Time shifting** (also called **translation**) maps the input signal x to the output signal g as given by: $g(t) = x(t - t_d)$; where t_d is a real number.
- Such a transformation shifts the signal (to the left or right) along the time axis.
- If $t_d > 0$, g is **shifted to the right** by $|t_d|$, relative to x (i.e., delayed in time).
- If $t_d < 0$, g is **shifted to the left** by $|t_d|$, relative to x (i.e., advanced in time).



- **Time scaling** (also called **dilation**) maps the input signal x to the output signal g as given by: $g(t) = x(at)$; where a is a **strictly positive** real number.
- Such a transformation is associated with a compression/expansion along the time axis.
- If $a > 1$, g is **compressed** along the horizontal axis by a factor of a , relative to x .
- If $a < 1$, g is **expanded** (stretched) along the horizontal axis by a factor of $1/a$, relative to x .

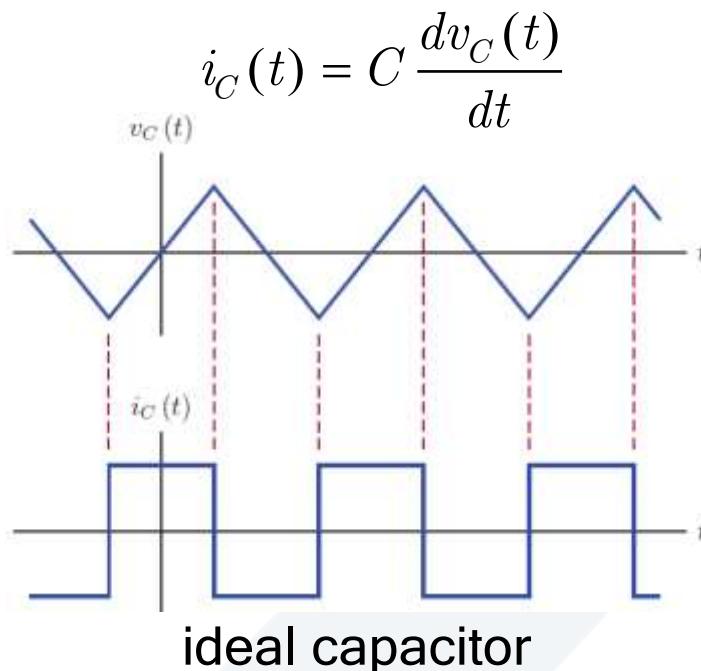
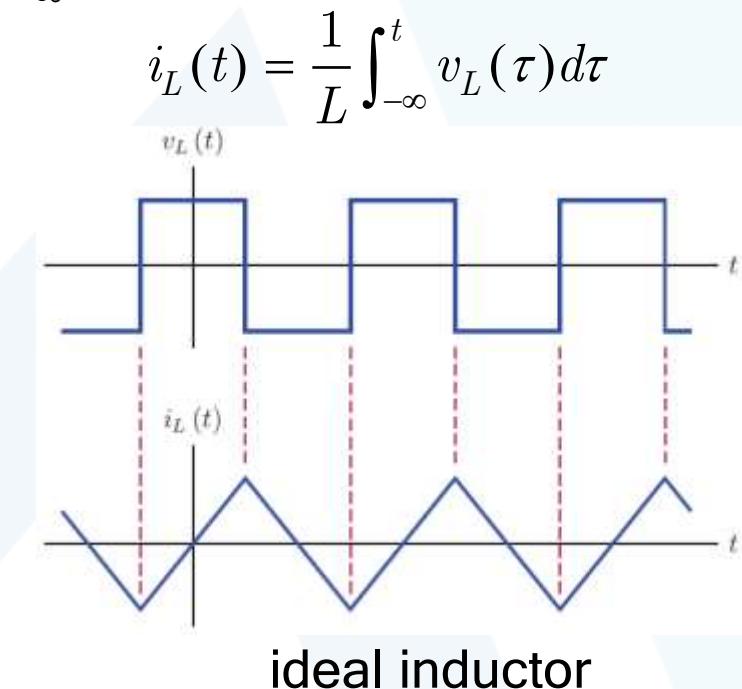


- **Time reversal** (also known as **reflection**) maps the input signal x to the output signal g as given by $g(t) = x(-t)$.
- Geometrically, the output signal g is a reflection of the input signal x about the (vertical) line $t = 0$.



- Integration and differentiation

Given a continuous-time signal $x(t)$, a new signal $g(t)$ may be defined as its time **derivative** in the form: $g(t) = dx(t)/dt$. Similarly, a signal can be defined as the **integral** of another signal in the form: $g(t) = \int_{-\infty}^t x(\tau)d\tau$



■ Sum of periodic signals

For two periodic signals x_1 and x_2 with fundamental periods T_1 and T_2 , respectively, and the sum $y = x_1 + x_2$:

- The sum y is periodic if and only if the ratio T_1/T_2 is a **rational number** (i.e., the quotient of two integers).
- If y is periodic, its fundamental period is rT_1 (or equivalently, qT_2 , since $rT_1 = qT_2$), where $T_1/T_2 = q/r$ and q and r are integers and **coprime**. (Note that rT_1 is simply the least common multiple of T_1 and T_2).

For example $x(t) = \sin(2\pi 1.5 t) + \sin(2\pi 2.5 t)$

$$T_1 = 1/1.5 = 2/3 \text{ s}, \quad T_2 = 1/2.5 = 2/5 \text{ s} \Rightarrow T_1/T_2 = 5/3$$

$$T = 5T_2 = 3T_1 = 2 \text{ s.}$$

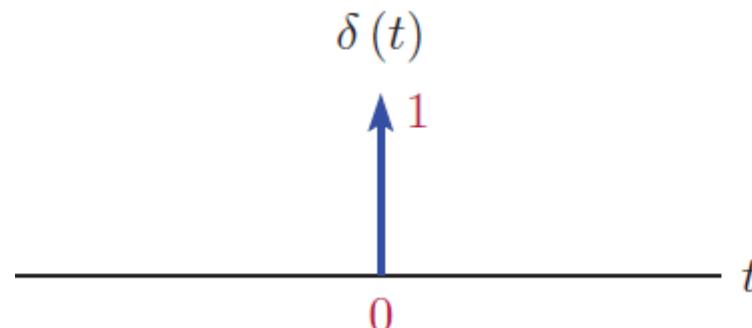
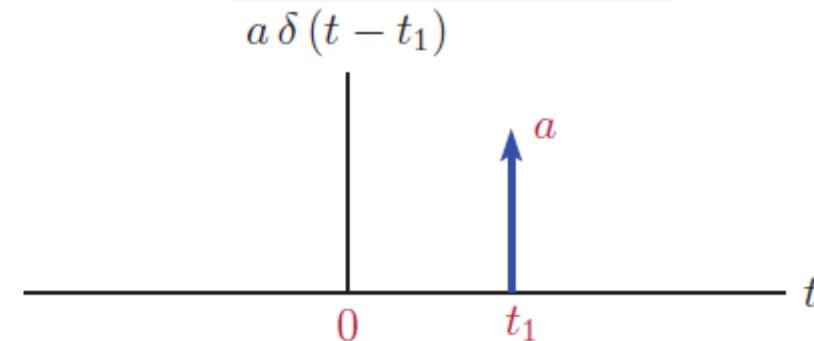
3. Basic building blocks for continuous-time signals

Unit-impulse function

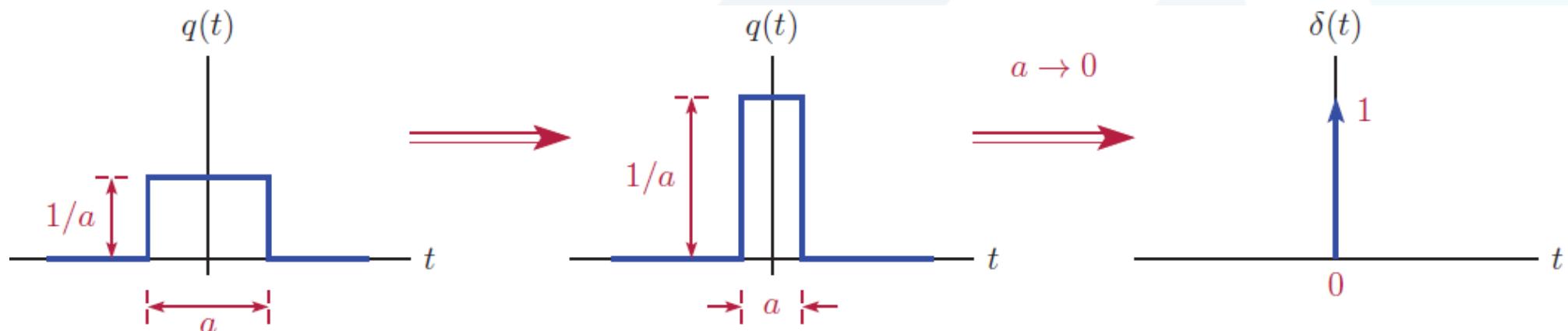
- The **unit-impulse function** (Dirac delta function or **delta function**), denoted δ , is defined by:

$$\delta(t) = \begin{cases} 0, & \text{if } t \neq 0 \\ \text{undefined,} & \text{if } t = 0 \end{cases} \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(t) dt = 1$$

- Technically, δ is not a function in the ordinary sense. Rather, it is what is known as a **generalized function**.



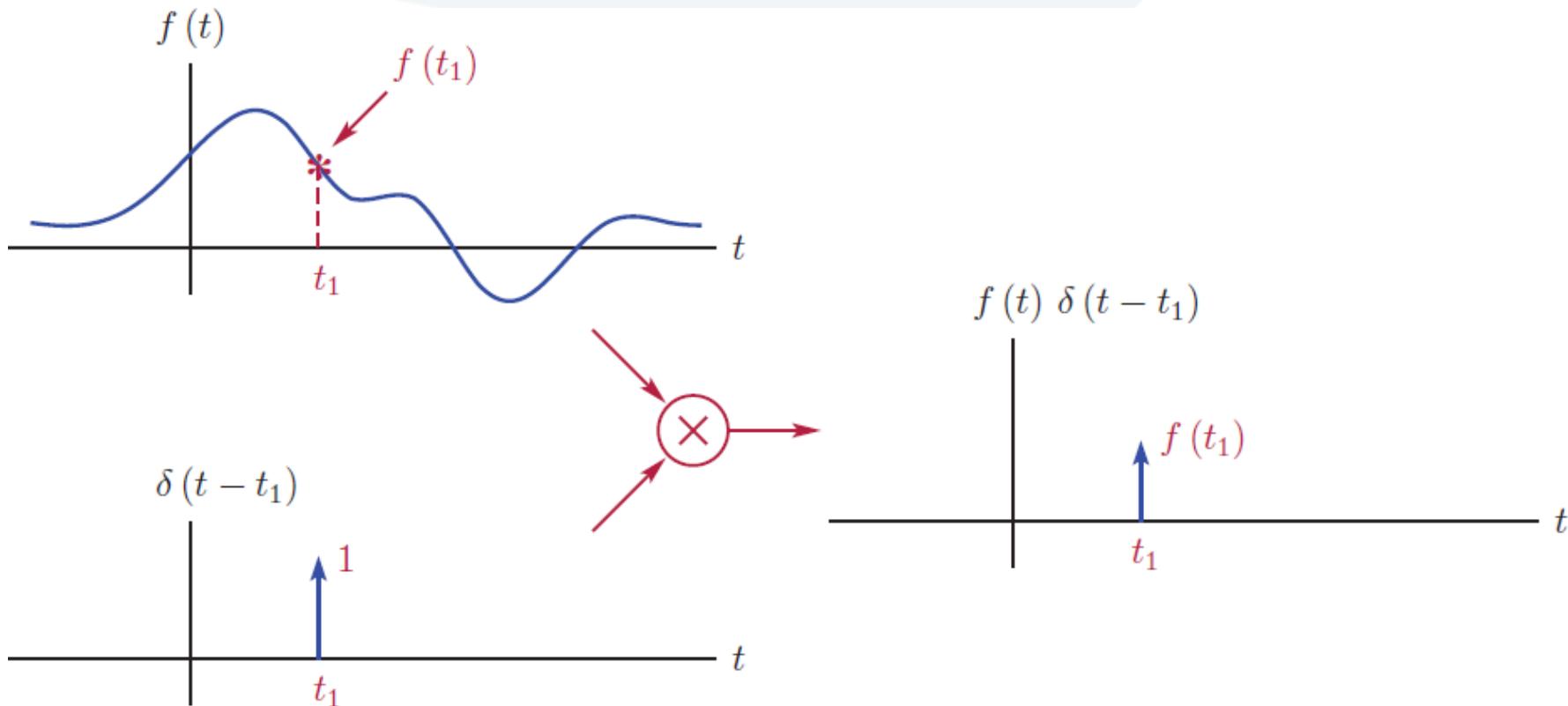
- Define $q(t) = \begin{cases} 1/a, & |t| < a/2 \\ 0, & |t| > a/2 \end{cases}$
- Clearly, for any choice of a , $\int_{-\infty}^{\infty} q(t)dt = 1$
- The function δ can be obtained as the following limit: $\delta(t) = \lim_{a \rightarrow 0} q(t)$



- **Sampling property.** For any continuous function f and any real constant t_1 , $f(t)\delta(t - t_1) = f(t_1)\delta(t - t_1)$.

- **Sifting property.** For any continuous function f and any real constant t_1 :

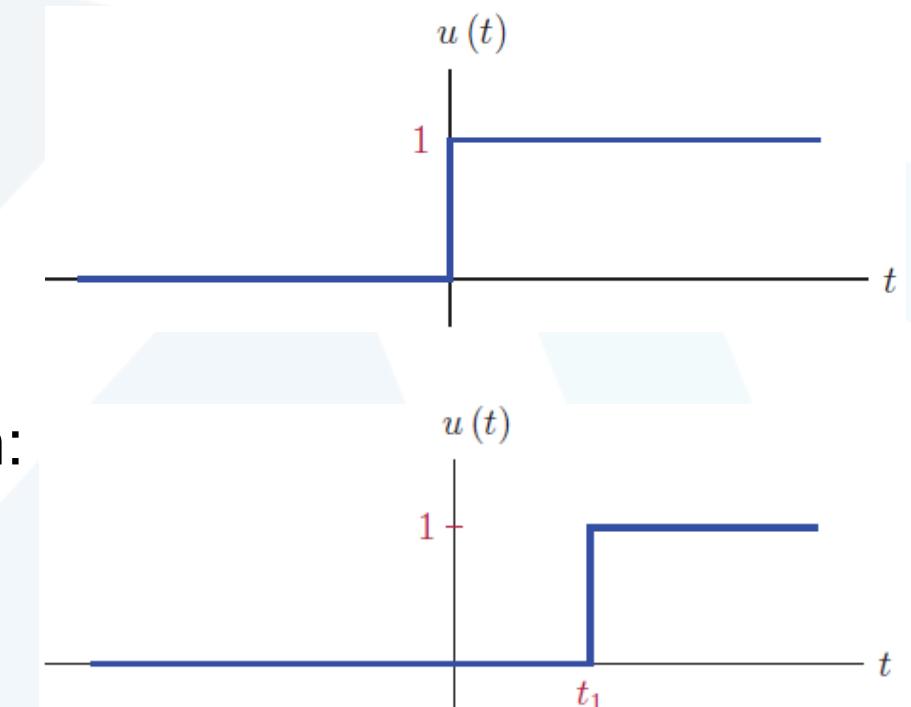
$$\int_{-\infty}^{\infty} f(t) \delta(t - t_1) dt = f(t_1)$$



Unit-Step Function

- The **unit-step function** (also known as the **Heaviside function**), denoted u , is defined as:

$$u(t) = \begin{cases} 1, & t \geq 0 \\ 0, & t < 0 \end{cases}$$



- A time **shifted version** of the unit-step function:

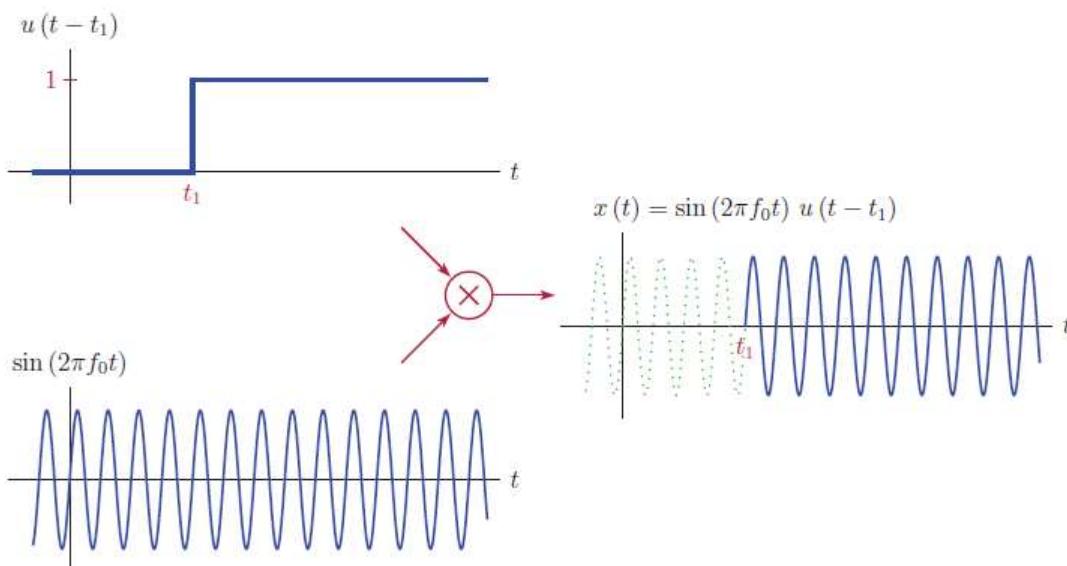
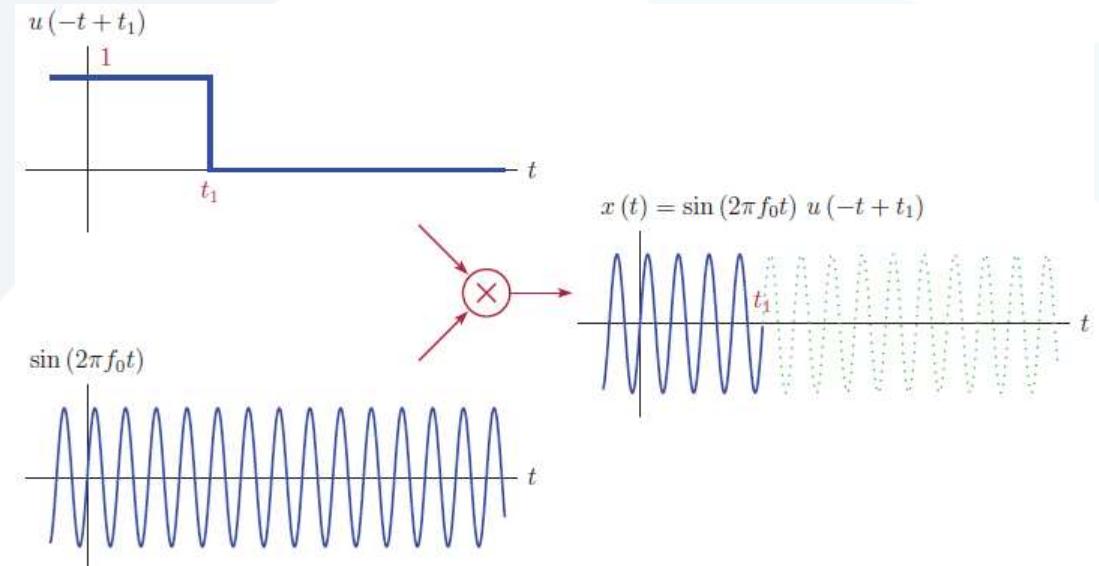
$$u(t - t_1) = \begin{cases} 1, & t \geq t_1 \\ 0, & t < t_1 \end{cases}$$

- Signals begin at $t = 0$ (**causal signals**) can be described in terms of $u(t)$.

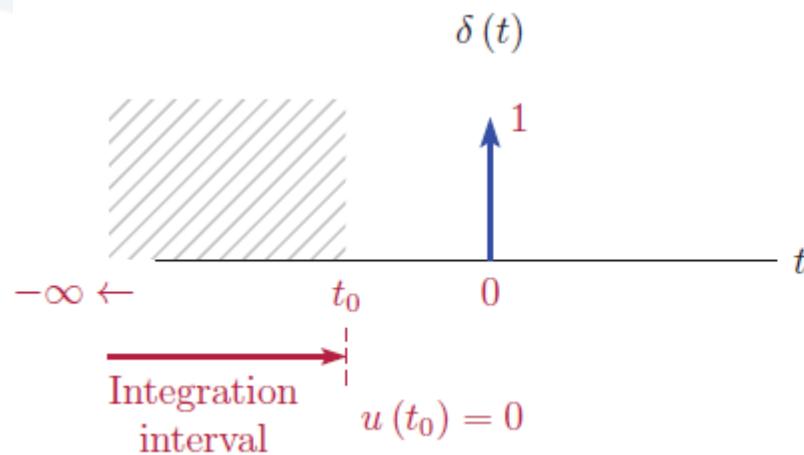
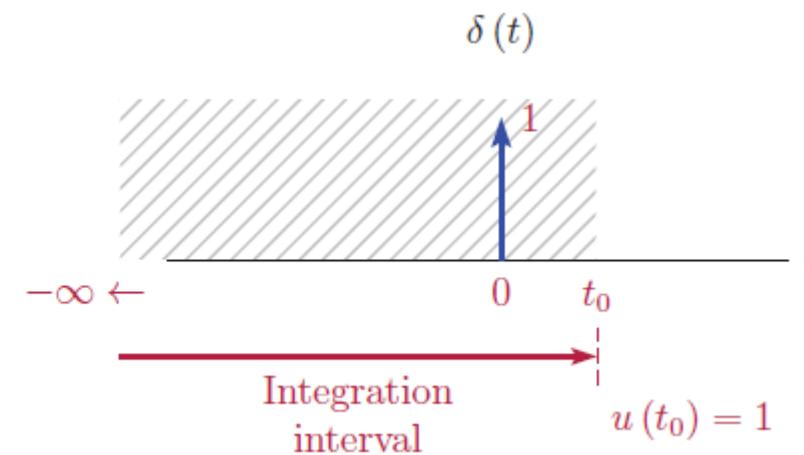
- Using the **unit-step** function to **turn a signal on/off** at a specified time instant:

$$x(t)u(t - t_1) = \begin{cases} \sin(2\pi f_0 t), & t \geq t_1 \\ 0, & t < t_1 \end{cases}$$

$$x(t)u(-t + t_1) = \begin{cases} \sin(2\pi f_0 t), & t \leq t_1 \\ 0, & t > t_1 \end{cases}$$

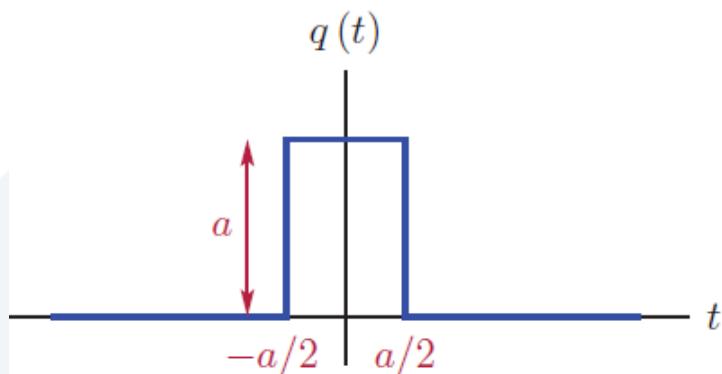
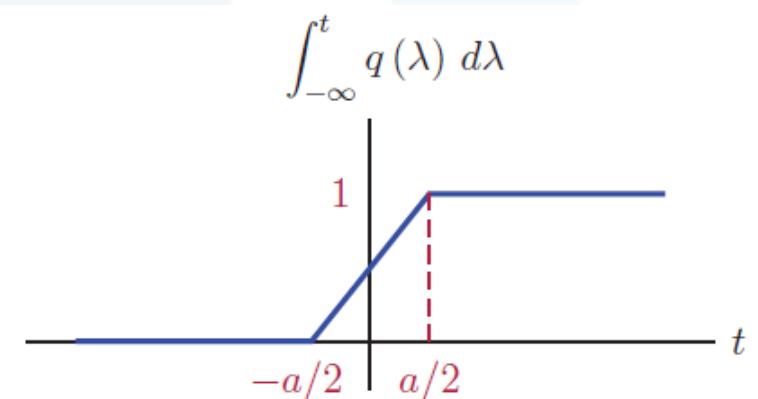


- The Relationship between the **unit-step** function and the **unit-impulse** function:



$$u(t) = \int_{-\infty}^t \delta(\tau) d\tau$$

$$\delta(t) = \frac{du(t)}{dt}$$

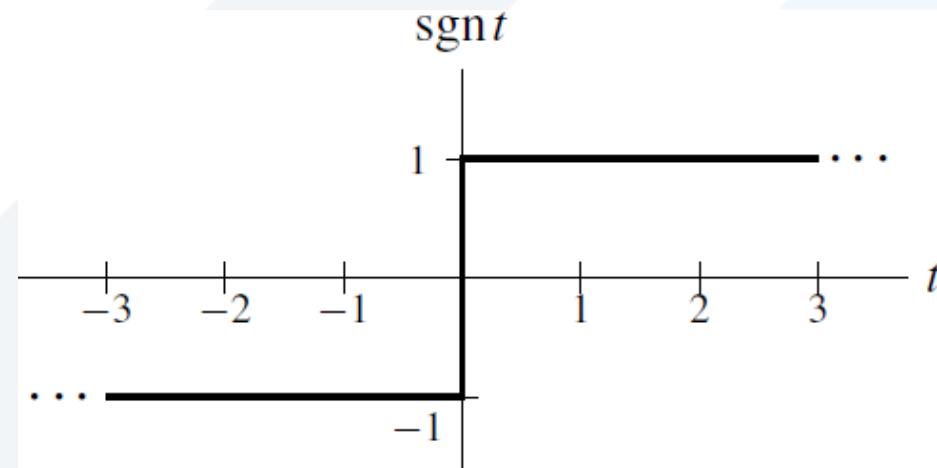


Signum Function

- The **signum function**, denoted sgn , is defined as:

$$\text{sgn}t = \begin{cases} 1 & \text{if } t > 0 \\ 0 & \text{if } t = 0 \\ -1 & \text{if } t < 0 \end{cases}$$

- From its definition, one can see that the signum function simply computes the **sign** of a number.

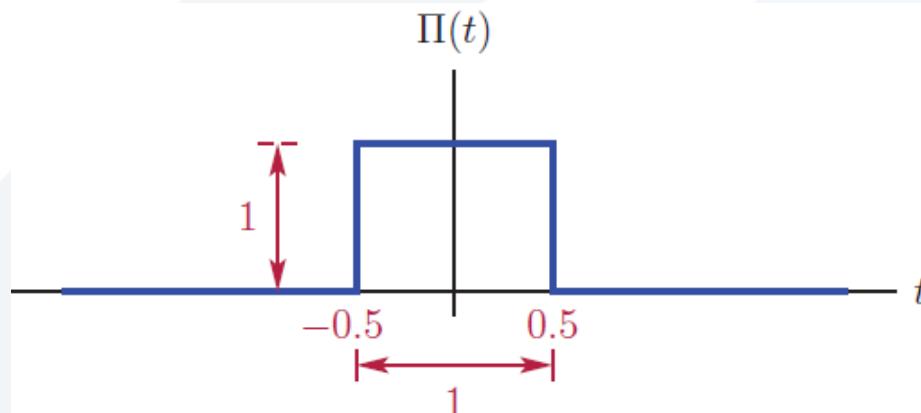


Unit-pulse function

- The **unit-pulse function** (also called the unit-rectangular pulse function), denoted rect , is given by:

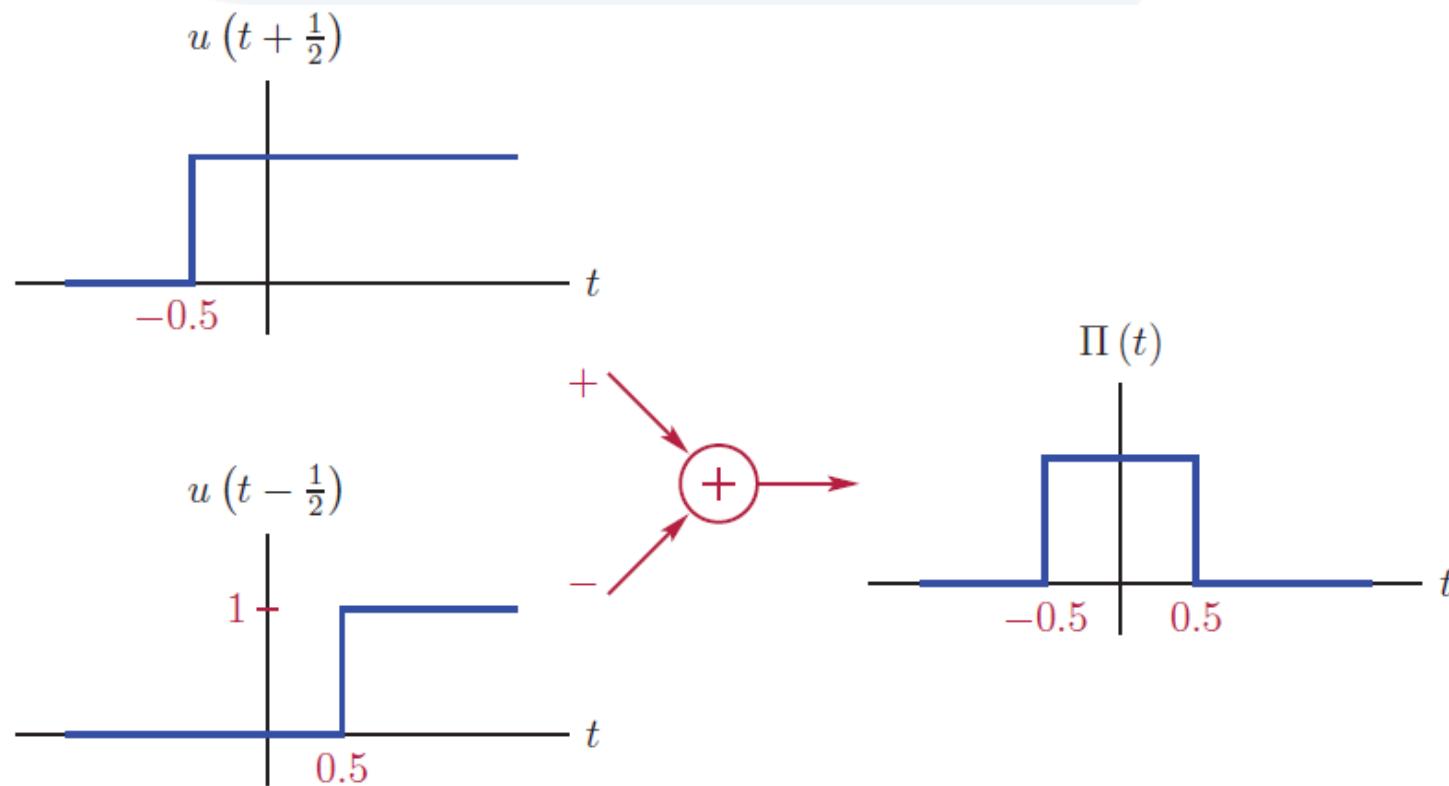
$$\text{rect}t = \Pi(t) = \begin{cases} 1, & \text{if } -\frac{1}{2} < t < \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$

- Due to the manner in which the rect function is used in practice, the actual **value of $\text{rect}t$ at $t = \pm\frac{1}{2}$** is unimportant. Sometimes \neq values are used.



- Constructing a **unit-pulse** function from **unit-step** functions:

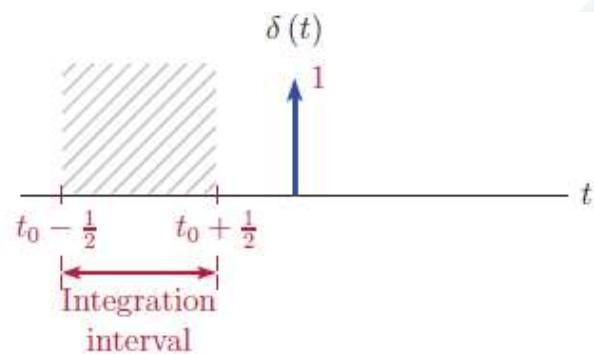
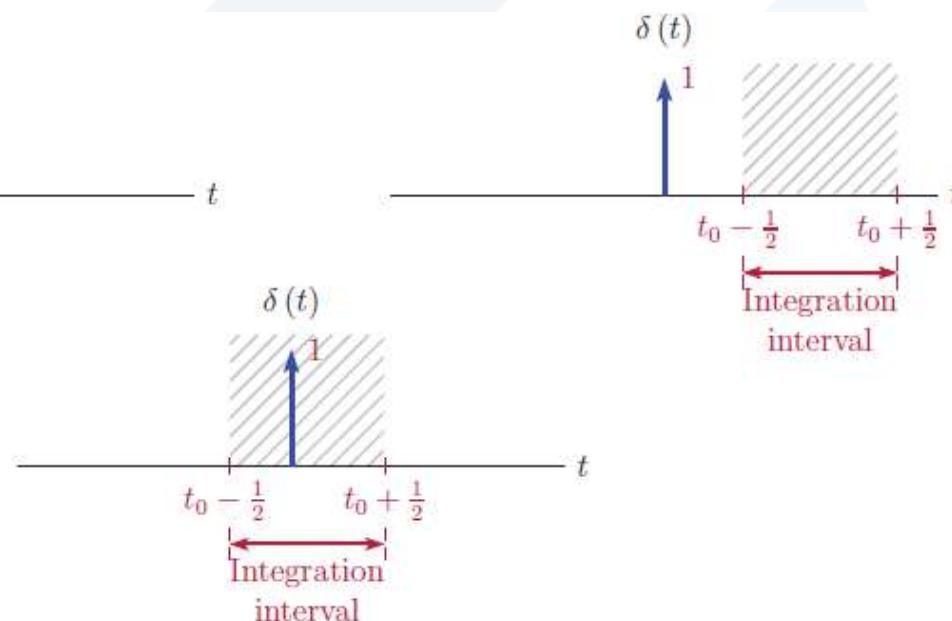
$$\Pi(t) = u(t + \frac{1}{2}) - u(t - \frac{1}{2})$$



- Constructing a **unit-pulse** function from **unit- impulse** functions:

$$\Pi(t) = u(t + \frac{1}{2}) - u(t - \frac{1}{2}) = \int_{-\infty}^{t+1/2} \delta(\tau) d\tau - \int_{-\infty}^{t-1/2} \delta(\tau) d\tau = \int_{t-1/2}^{t+1/2} \delta(\tau) d\tau$$

$$\int_{t-1/2}^{t+1/2} \delta(\tau) d\tau = \begin{cases} 1, & t - \frac{1}{2} < 0 \text{ and } t + \frac{1}{2} > 0 \\ 0, & \text{otherwise} \end{cases} = \begin{cases} 1, & -\frac{1}{2} < t < \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$



Unit-Ramp Function

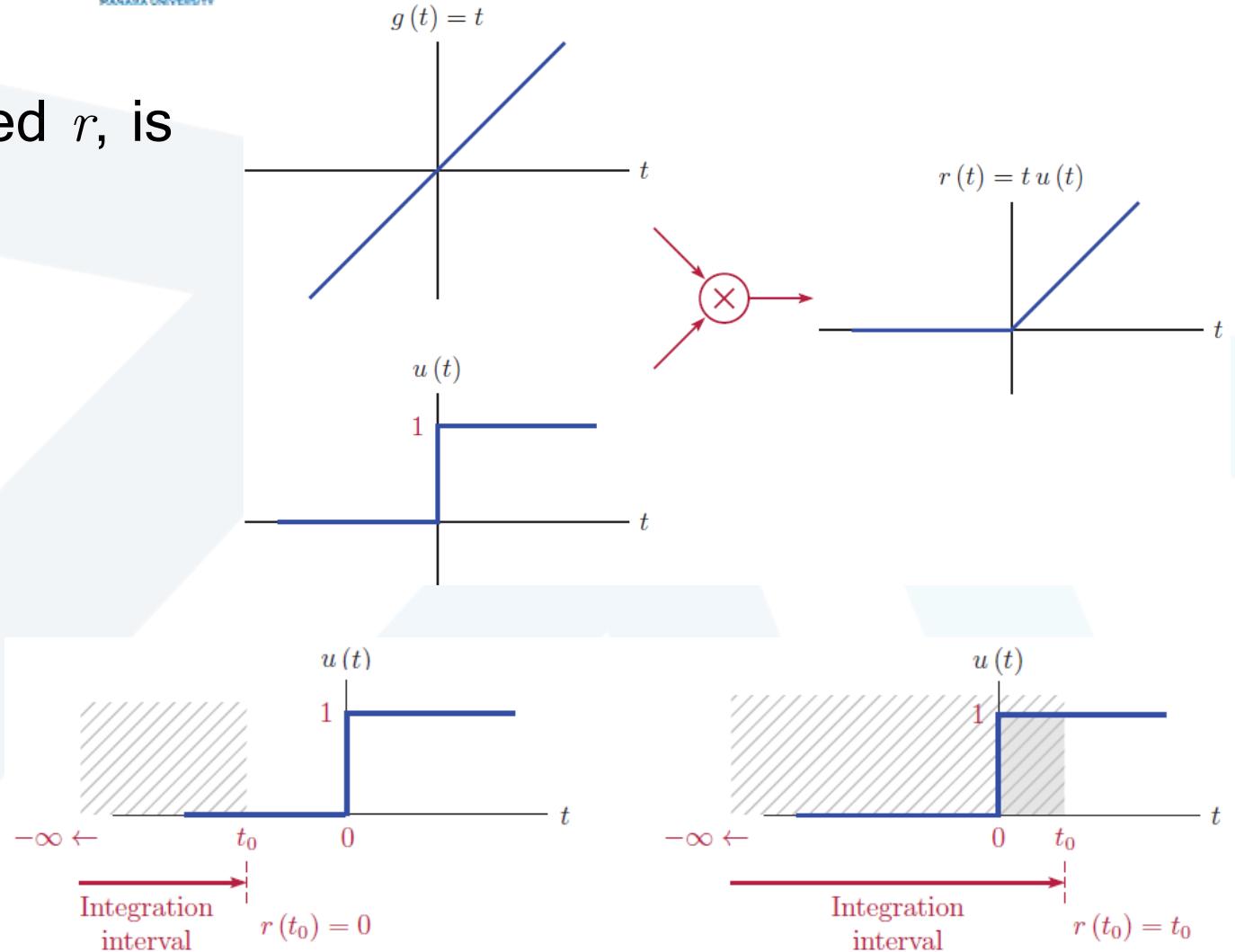
- The **unit-ramp function**, denoted r , is defined as:

$$r(t) = \begin{cases} t, & \text{if } t \geq 0 \\ 0, & \text{otherwise} \end{cases}$$

or, equivalently: $r(t) = t u(t)$.

- Constructing a **unit-ramp function** from a **unit-step**:

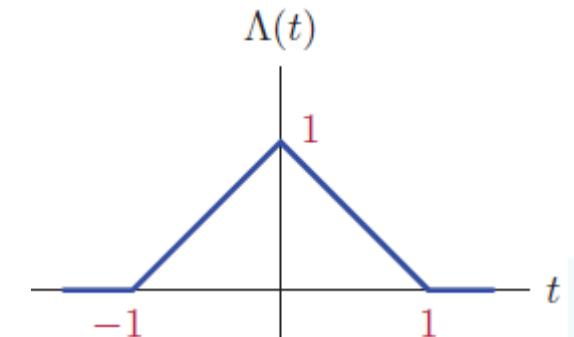
$$r(t) = \int_{-\infty}^t u(\tau) d\tau$$



Unit Triangular Function

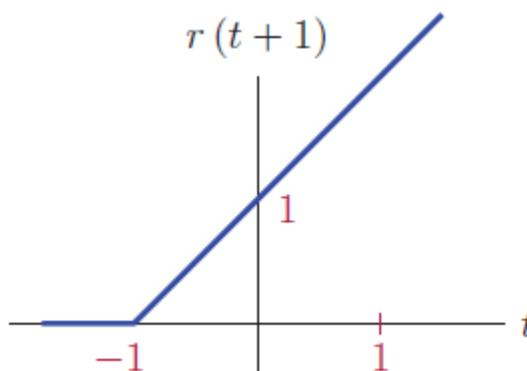
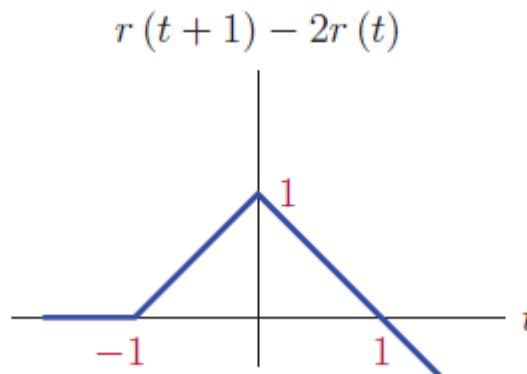
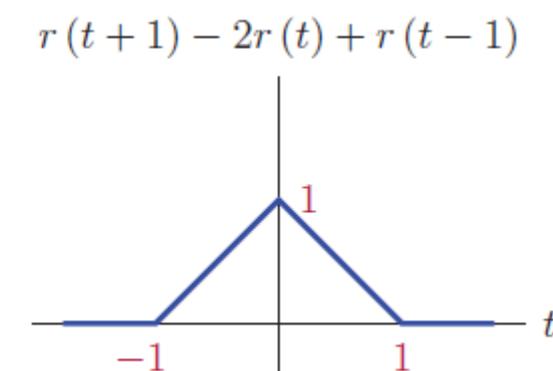
- The **unit triangular function** (unit-triangular pulse function), denoted tri, is defined as:

$$\text{trit} = \Lambda(t) = \begin{cases} 1 - |t|, & \text{if } |t| \leq 1 \\ 0, & \text{otherwise} \end{cases}$$



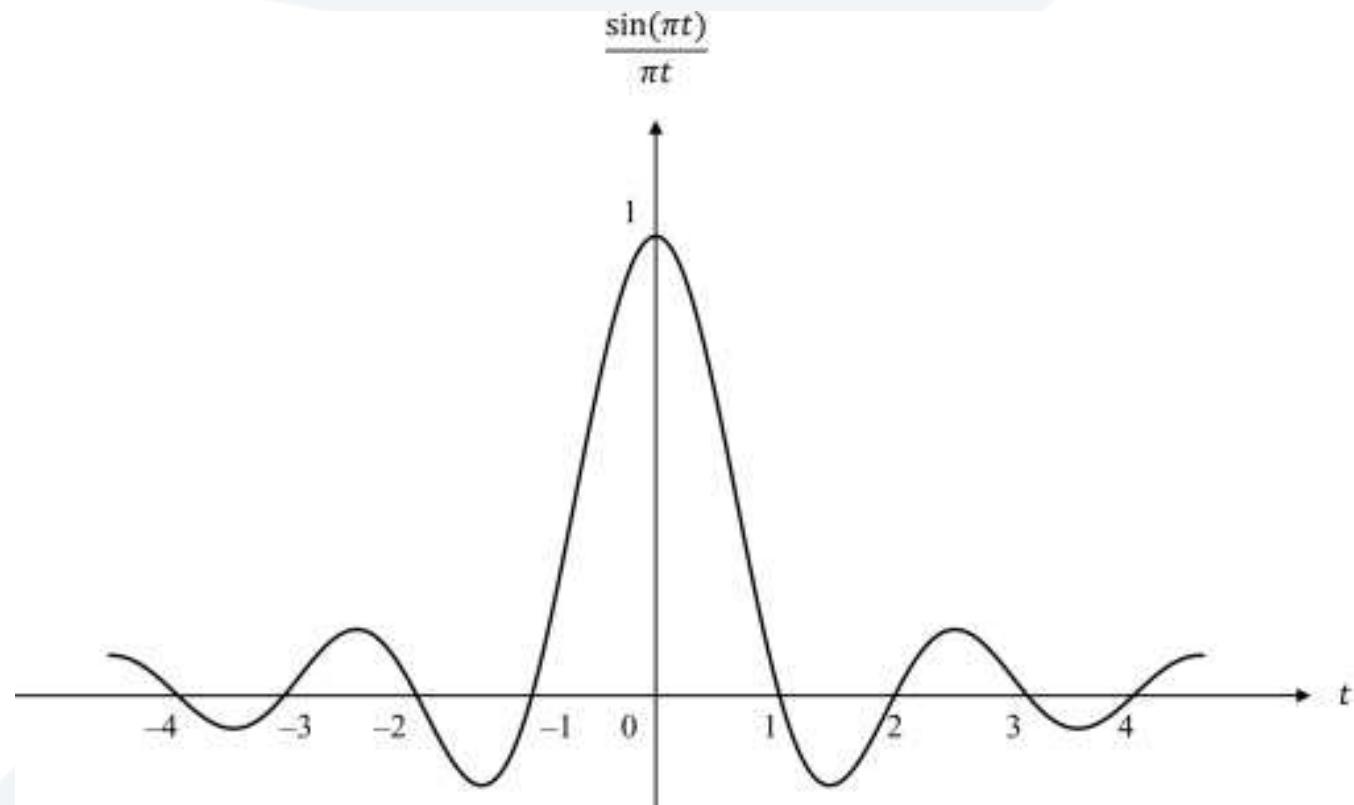
- Constructing a **unit-triangle** using **unit-ramp** functions:

$$\Lambda(t) = r(t+1) - 2r(t) + r(t-1)$$



Cardinal Sine Function

- The **cardinal sine function**, denoted sinc , is given by $\text{sinc}t = \frac{\sin(\pi t)}{\pi t}$



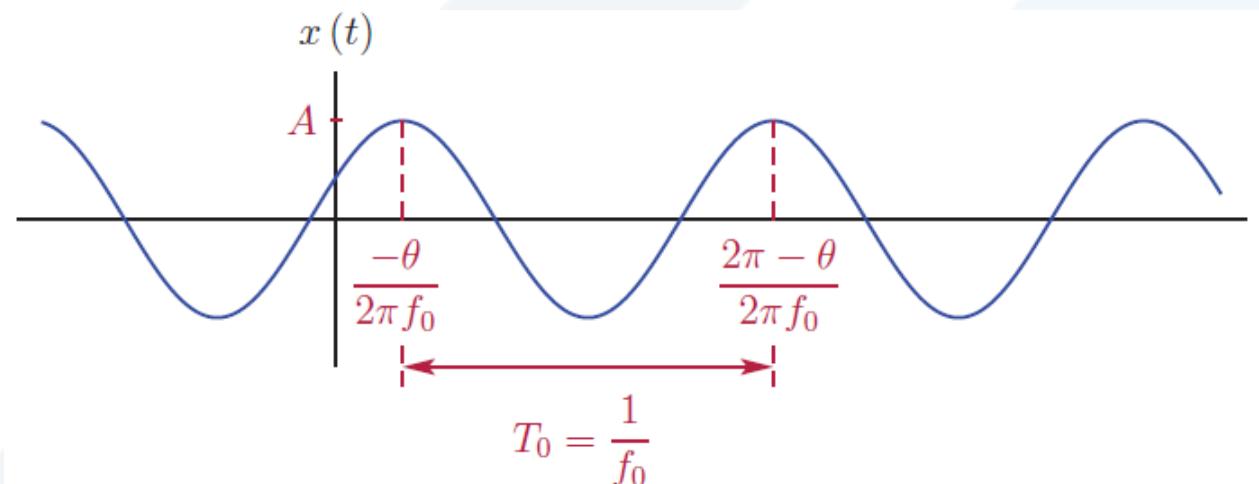
Sinusoidal Signal

- A **real sinusoidal function** is a function of the form:

$$x(t) = A \cos(\omega_0 t + \theta)$$

where A is the **amplitude** of the signal, ω_0 is the **radian frequency** (rad/s), and θ is the initial phase angle (rad), all are **real** constants.

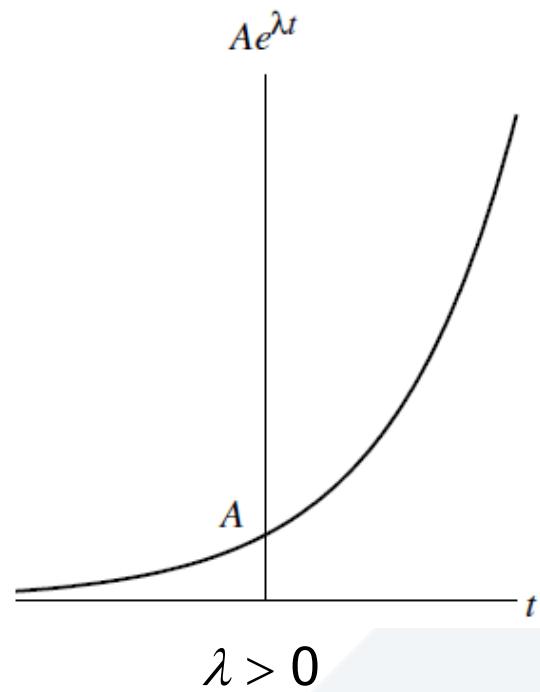
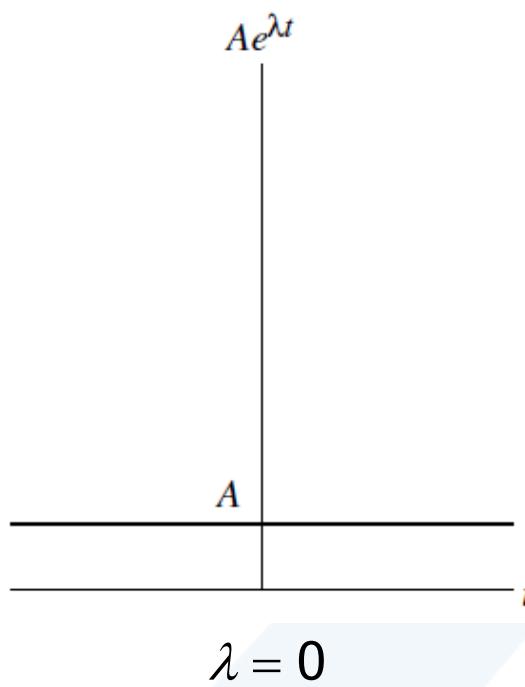
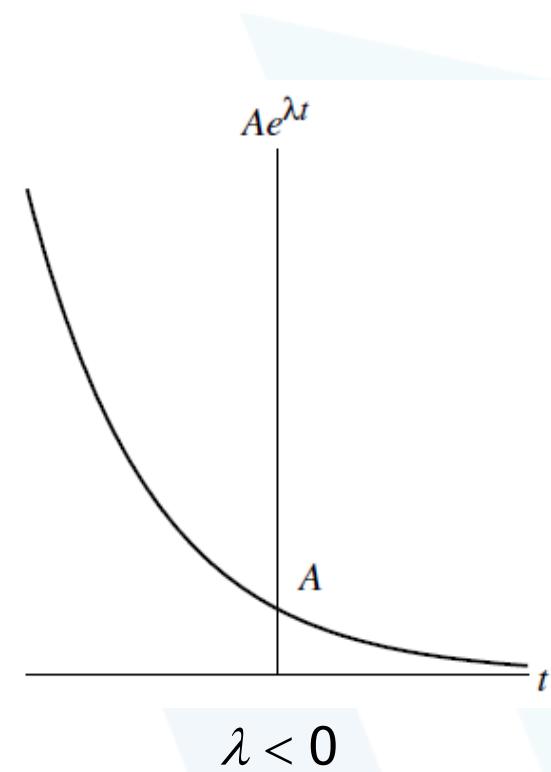
$\omega_0 = 2\pi f_0$ where f_0 is the **frequency** (Hz), $T_0 = 1/f_0$ is the **period** (s).



Complex Exponential Function

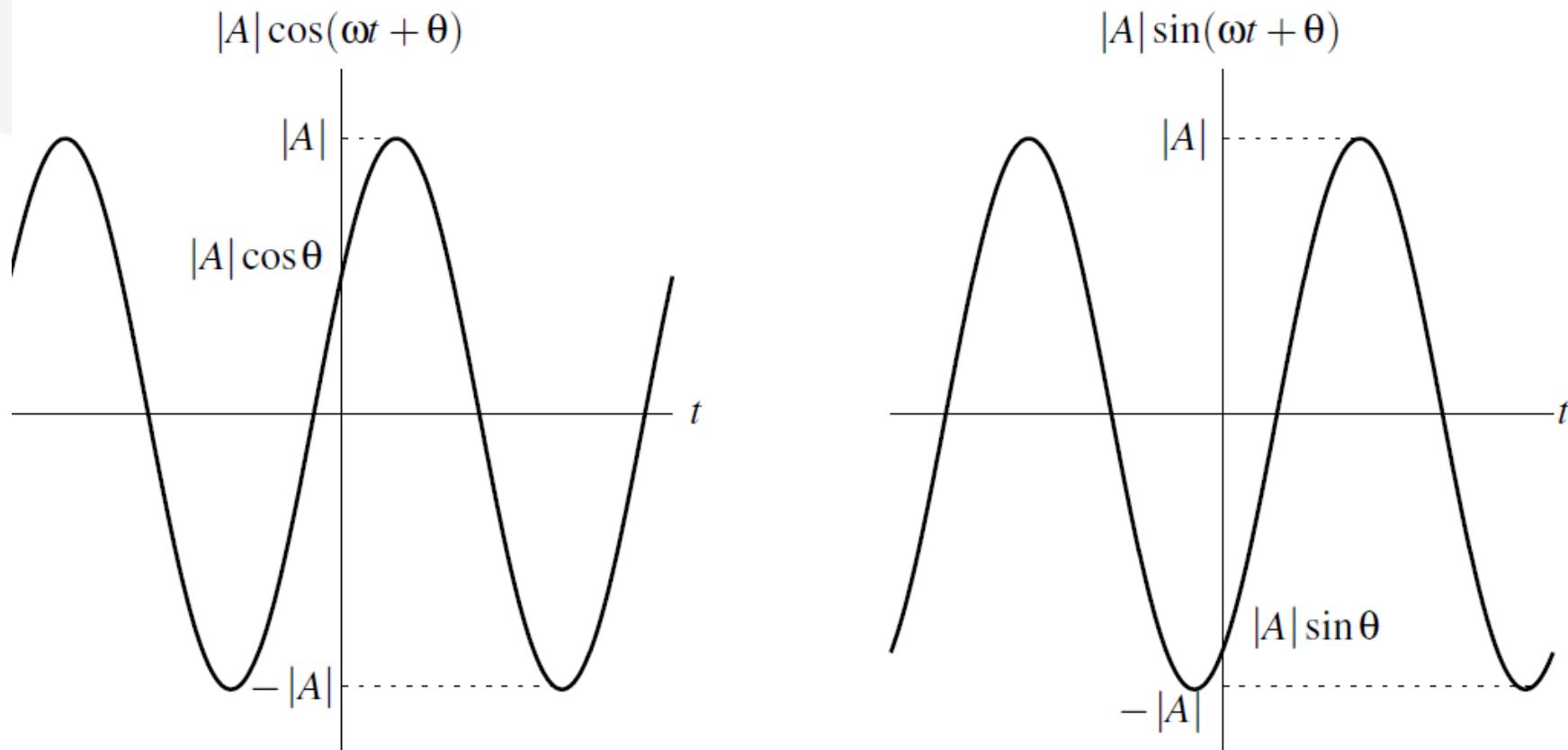
- A **complex exponential** function is a function of the form $x(t) = Ae^{\lambda t}$, where A and λ are complex **constants**.
- A complex exponential can exhibit one of a number of **distinct modes of behavior**, depending on the values of A and λ .
- For example, as special cases, complex exponentials include real exponentials and complex sinusoids.
- A **real exponential** function is a special case of a complex exponential $x(t) = Ae^{\lambda t}$, where A and λ are restricted to be **real** numbers.
- A real exponential can exhibit one of **three distinct modes** of behavior, depending on the value of λ , as illustrated below.

- If $\lambda > 0$, $x(t)$ **increases** exponentially as t increases (growing exponential).
- If $\lambda < 0$, $x(t)$ **decreases** exponentially as t increases (decaying exponential).
- If $\lambda = 0$, $x(t)$ simply equals the **constant** A .



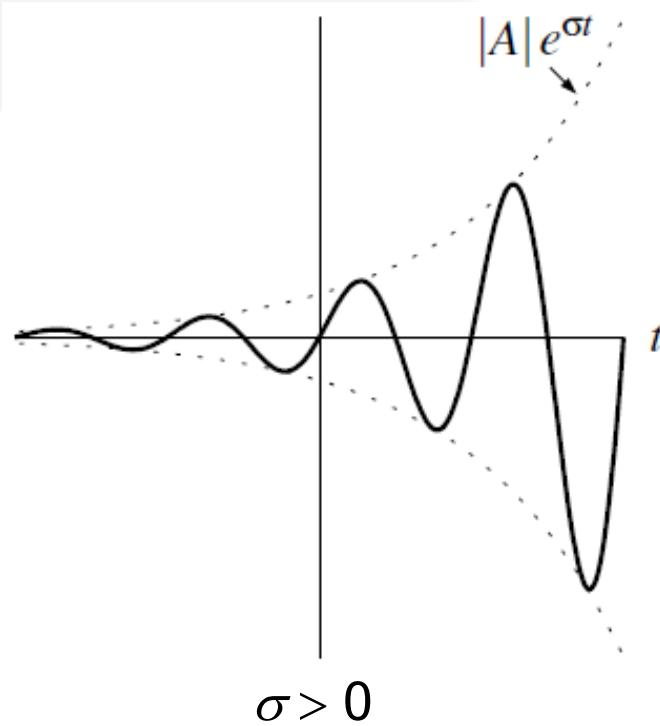
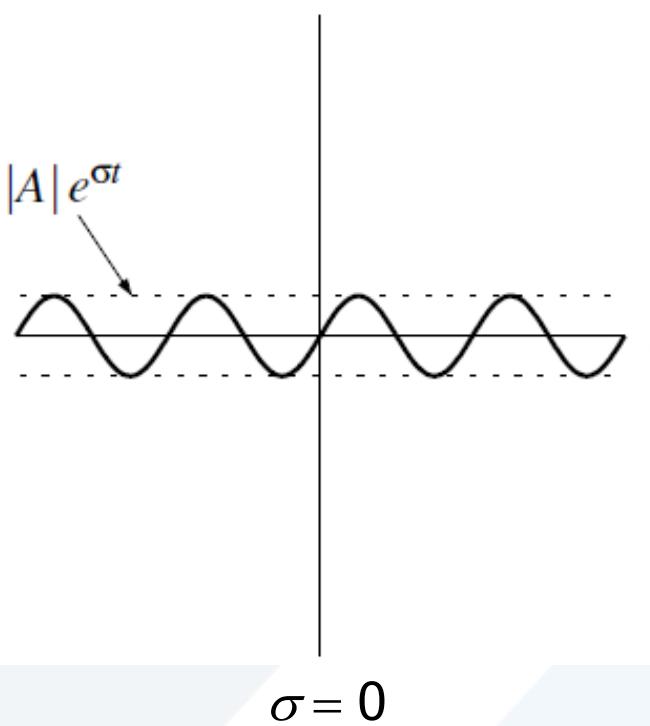
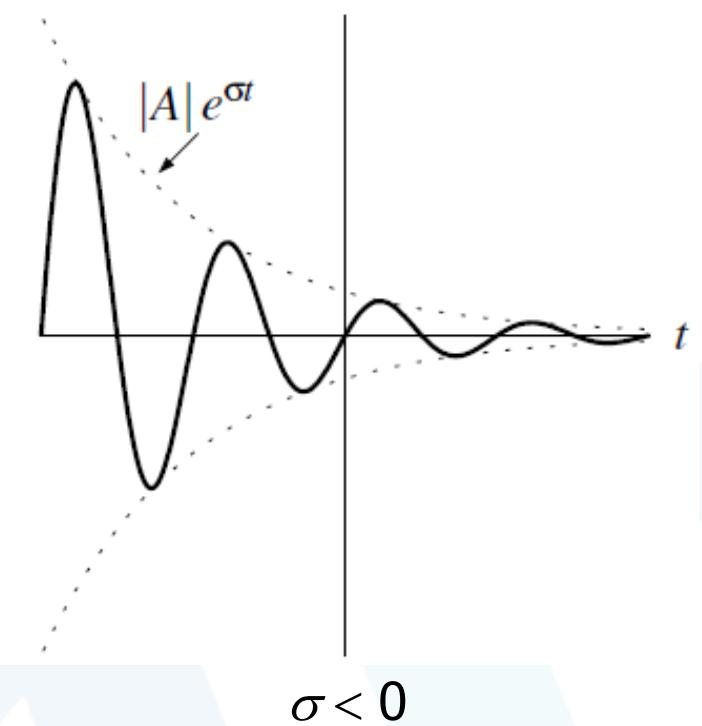
Complex Sinusoidal Function

- A **complex sinusoidal function** is a special case of a complex exponential $x(t) = Ae^{\lambda t}$, where A is **complex** and λ is **purely imaginary** (i.e., $\text{Re}\{\lambda\} = 0$).
- That is, a **complex sinusoidal function** is a function of the form $x(t) = Ae^{j\omega t}$, where A is **complex** and ω is **real**.
- By expressing A in polar form as $A = |A|e^{j\theta}$ (where θ is **real**) and using Euler's relation, we can rewrite $x(t)$ as: $x(t) = \underbrace{|A|\cos(\omega t + \theta)}_{\text{Re}\{x(t)\}} + j\underbrace{|A|\sin(\omega t + \theta)}_{\text{Im}\{x(t)\}}$
- Thus, $\text{Re}\{x\}$ and $\text{Im}\{x\}$ are the same except for a time shift.
- Also, x is periodic with **fundamental period** $T = 2\pi/|\omega|$ and **fundamental frequency** $|\omega|$.



- In the most general case of a complex exponential function $x(t) = A e^{\lambda t}$, A and λ are both **complex**.

- Letting $A = |A|e^{j\theta}$ and $\lambda = \sigma + j\omega$ (where θ , σ , and ω are real), and using Euler's relation, we can rewrite $x(t)$ as: $x(t) = \underbrace{|A|e^{\sigma t} \cos(\omega t + \theta)}_{\text{Re}\{x(t)\}} + j \underbrace{|A|e^{\sigma t} \sin(\omega t + \theta)}_{\text{Im}\{x(t)\}}$
- Three distinct modes depending on the value of σ :
 - If $\sigma = 0$, $\text{Re}\{x\}$ and $\text{Im}\{x\}$ are **real sinusoids**.
 - If $\sigma > 0$, $\text{Re}\{x\}$ and $\text{Im}\{x\}$ are each the **product of a real sinusoid and a growing real exponential**.
 - If $\sigma < 0$, $\text{Re}\{x\}$ and $\text{Im}\{x\}$ are each the **product of a real sinusoid and a decaying real exponential**.
- From Euler's relation, a complex sinusoid can be expressed as the sum of two real sinusoids as:



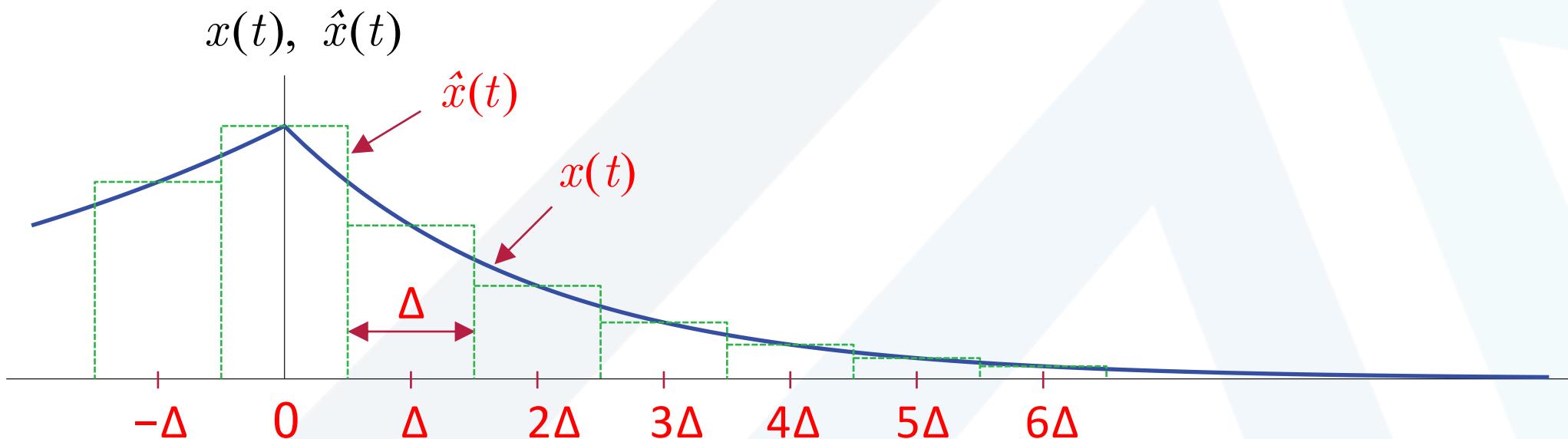
- Moreover, a real sinusoid can be expressed as the sum of two complex sinusoids using the identities:

$$A \cos(\omega t + \theta) = \frac{A}{2} [e^{j(\omega t + \theta)} + e^{-j(\omega t + \theta)}] \quad \text{and} \quad A \sin(\omega t + \theta) = \frac{A}{2} [e^{j(\omega t + \theta)} - e^{-j(\omega t + \theta)}]$$

Impulse decomposition for continuous-time signals

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau$$

$$\hat{x}(t) = \sum_{n=-\infty}^{\infty} x(n\Delta) \Pi\left(\frac{t - n\Delta}{\Delta}\right)$$



Energy and power definitions

- The **energy** of a continuous time signal $x(t)$ is given by: $E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$
- The **average power** of a continuous time signal $x(t)$ is given by:

periodic complex signal: $P_x = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} |x(t)|^2 dt$

non-periodic complex signal: $P_x = \lim_{T \rightarrow \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$

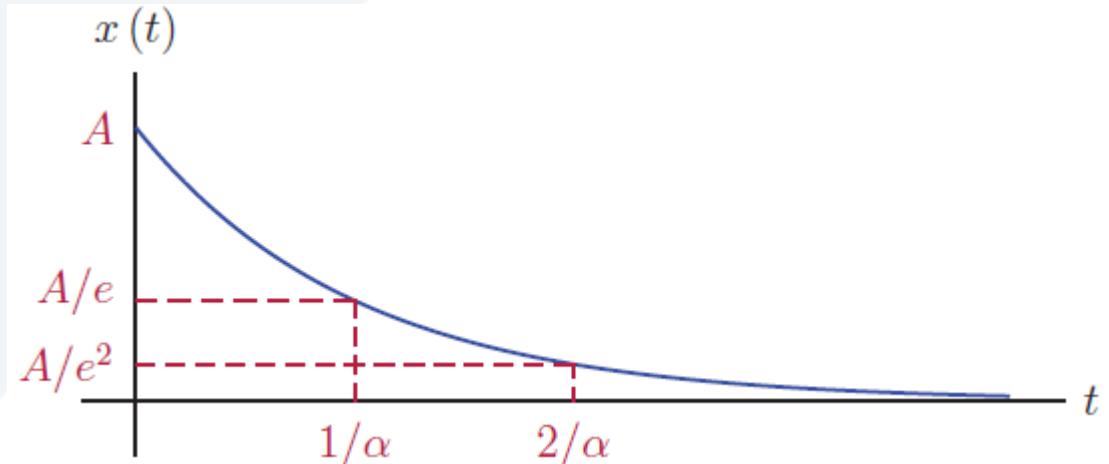
- **Energy signals** are those that have finite energy and zero power, i.e., $E_x < \infty$, and $P_x = 0$.
- **Power signals** are those that have finite power and infinite energy, i.e., $E_x \rightarrow \infty$, and $P_x < \infty$.

- **Example 1: Energy of exponential signal**

Compute the energy of the exponential signal (where $\alpha > 0$).

$$x(t) = \begin{cases} A e^{-\alpha t} & \text{if } t \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

$$E_x = \int_0^{\infty} A^2 e^{-2\alpha t} dt = \frac{A^2}{2\alpha}$$



- **Example 2: Power of a sinusoidal signal**

$$x(t) = A \sin(2\pi f_0 t + \theta)$$

$$P_x = f_0 \int_{-1/2f_0}^{1/2f_0} A^2 \sin^2(2\pi f_0 t + \theta) dt = \frac{A^2}{2}$$

Symmetry properties

Even and odd symmetry

- A **real-valued** signal is said to have **even symmetry** if it has the property: $x(-t) = x(t)$ for all values of t .
- A **real-valued** signal is said to have **odd symmetry** if it has the property: $x(-t) = -x(t)$ for all values of t .

Decomposition into even and odd components

- Every **real-valued** signal $x(t)$ has a **unique** representation of the form: $x(t) = x_e(t) + x_o(t)$; where the signals x_e and x_o are **even** and **odd**, respectively.
- In particular, the signals x_e and x_o are given by:

$$x_e(t) = \frac{1}{2}[x(t) + x(-t)] \text{ and } x_o(t) = \frac{1}{2}[x(t) - x(-t)]$$

Symmetry properties for complex signals

- A **complex-valued** signal is said to have **conjugate symmetric** if it has the property: $x(-t) = x^*(t)$ for all values of t .
- A **complex-valued** signal is said to have **conjugate antisymmetric** if it has the property: $x(-t) = -x^*(t)$ for all values of t .

Decomposition of complex signals

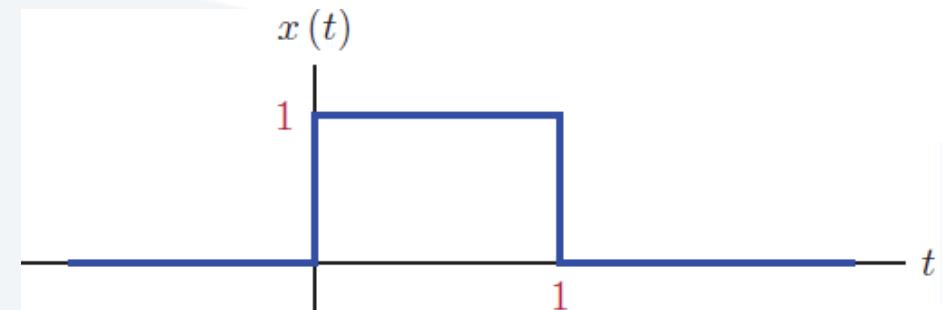
- Every **complex-valued** signal $x(t)$ has a **unique** representation of the form: $x(t) = x_E(t) + x_O(t)$; where the signals x_E and x_O are **conjugate symmetric** and **conjugate antisymmetric**, respectively.
- In particular, the signals x_E and x_O are given by:

$$x_E(t) = \frac{1}{2}[x(t) + x^*(-t)] \text{ and } x_O(t) = \frac{1}{2}[x(t) - x^*(-t)]$$

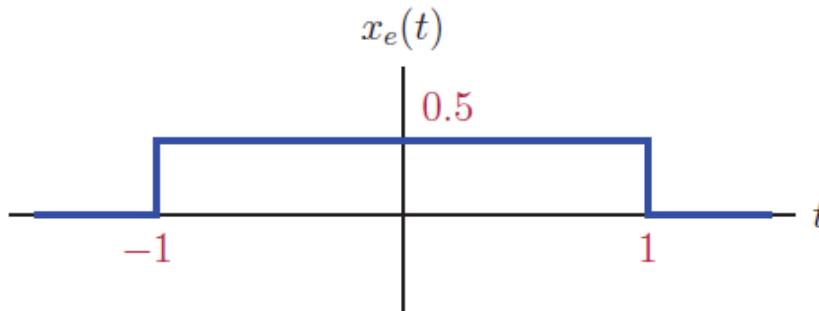
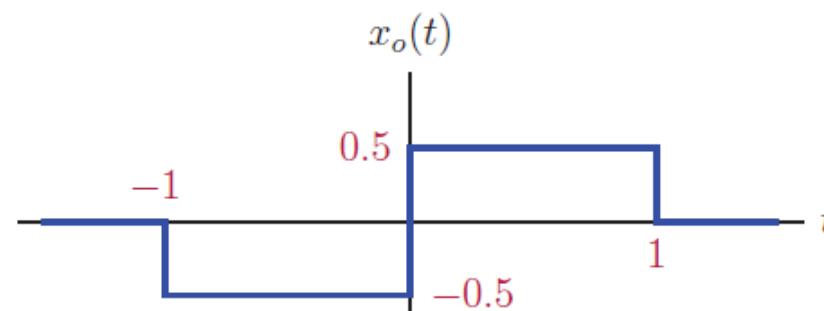
- Example 3: Even and odd components of a rectangular pulse

Determine the even and the odd components of the rectangular pulse signal.

$$\Pi(t - \frac{1}{2}) = \begin{cases} 1 & \text{if } 0 < t < 1 \\ 0 & \text{otherwise} \end{cases}$$



$$x_e(t) = \frac{\Pi(t - \frac{1}{2}) + \Pi(-t - \frac{1}{2})}{2} = \frac{\Pi(t/2)}{2}, \quad x_o(t) = \frac{\Pi(t - \frac{1}{2}) - \Pi(-t - \frac{1}{2})}{2}$$

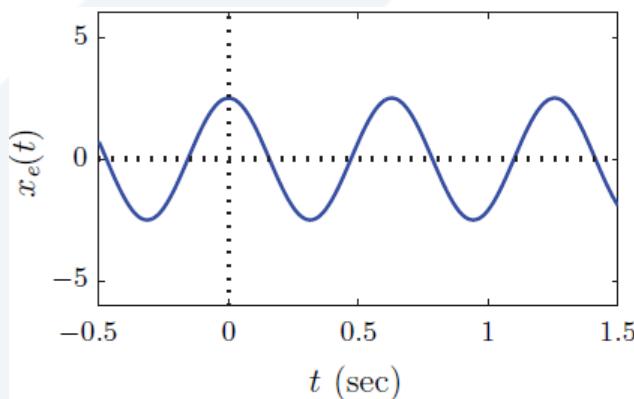
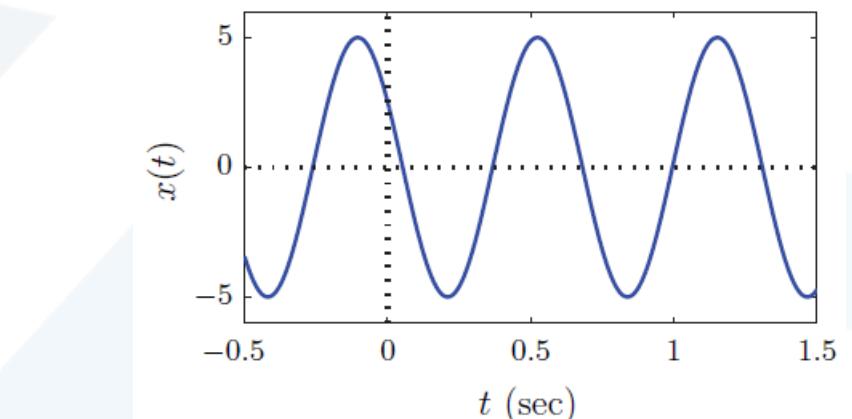
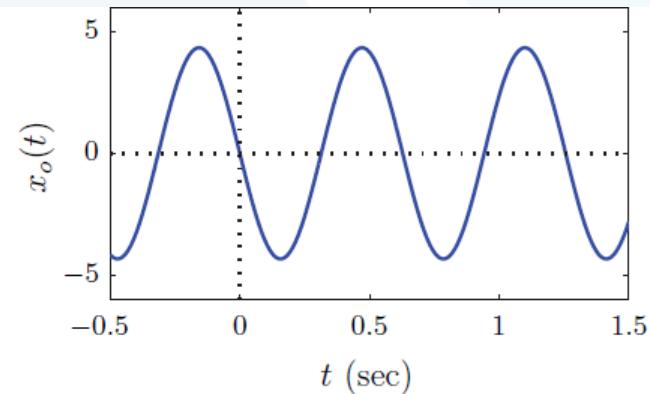


- **Example 4: Even and odd components of a sinusoidal signal**

Determine the even and the odd components of the sinusoidal signal $x(t) = 5 \cos(10t + \pi/3)$.

$$\begin{aligned} x_e(t) &= \frac{5}{2} \cos(10t + \pi/3) + \frac{5}{2} \cos(-10t + \pi/3) \\ &= \frac{5}{2} \cos(10t) \end{aligned}$$

$$\begin{aligned} x_o(t) &= \frac{5}{2} \cos(10t + \pi/3) - \frac{5}{2} \cos(-10t + \pi/3) \\ &= -\frac{5\sqrt{3}}{2} \sin(10t) \end{aligned}$$



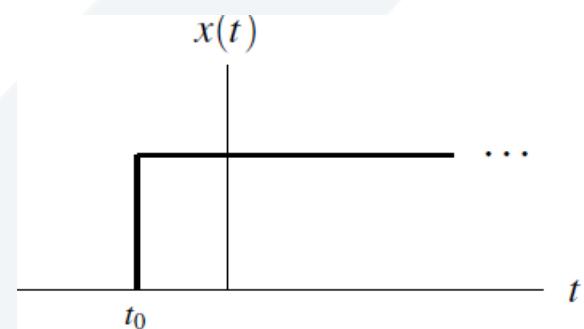
- **Example 5:** Symmetry of a complex exponential signal

Consider the complex exponential signal $x(t) = Ae^{j\omega t}$, A : real

$x(-t) = Ae^{-j\omega t} = (Ae^{j\omega t})^* = x^*(t) \Rightarrow$ the signal $x(t)$ is conjugate symmetric.

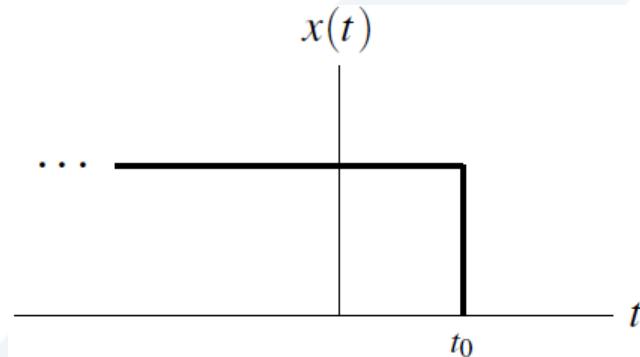
Right and Left-Sided Signals

- A signal x is said to be **right sided** if, for some (finite) real constant t_0 , the following condition holds: $x(t) = 0$ for all $t < t_0$ (i.e., x is only **potentially nonzero to the right of t_0**).



- A signal x is said to be **causal** if $x(t) = 0$ for all $t < 0$.

- A causal signal is a **special case** of a right-sided signal.
- A causal signal is not to be **confused** with a causal system.
- A signal x is said to be **left sided** if, for some (finite) real constant t_0 , the following condition holds: $x(t) = 0$ for all $t > t_0$ (i.e., x is only **potentially nonzero to the left of t_0**).



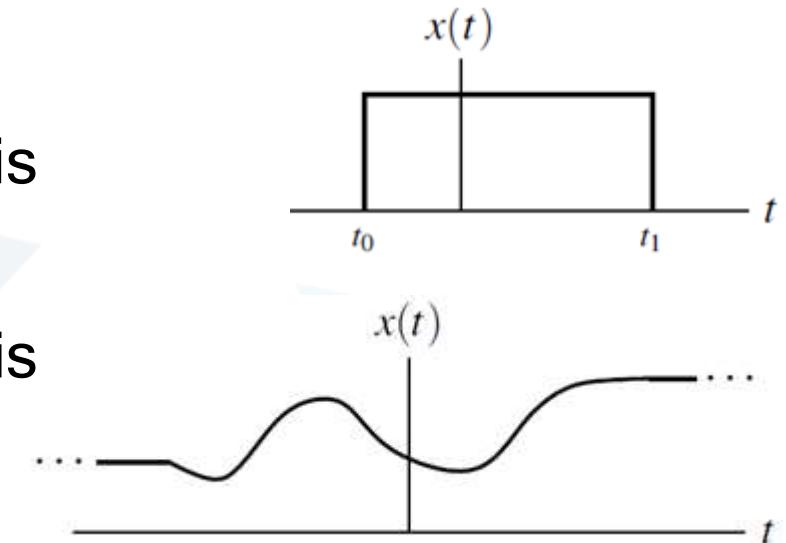
- A signal x is said to be **anticausal** if $x(t) = 0$ for all $t > 0$.
- An anticausal signal is a **special case** of a left-sided signal.
- An anticausal signal is not to be **confused** with a anticausal system.

Finite-Duration and Two-Sided Signals

- A signal that is both left sided and right sided is said to be **finite duration** (or **finite support**).
- A signal that is neither left sided nor right sided is said to be **two sided**.

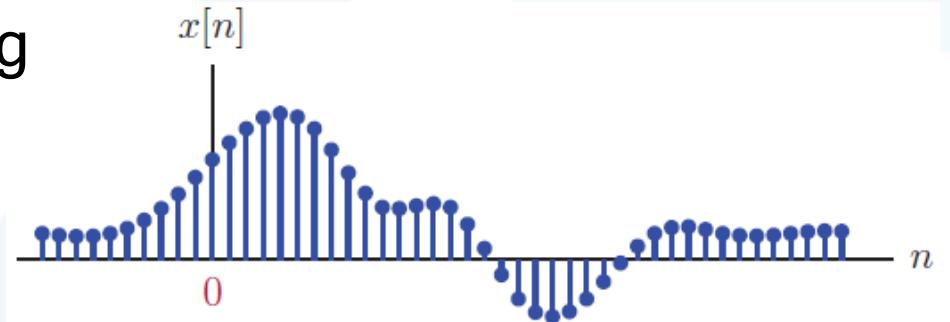
Bounded Signals

- A signal x is said to be **bounded** if there exists some (**finite**) positive real constant A such that $|x(t)| \leq A$ for all t (i.e., $x(t)$ is **finite** for all t).
- For ex., sine and cosine signals are bounded, since $|\sin t| \leq 1$ and $|\cos t| \leq 1 \ \forall t$.
- In contrast, the tangent signal and any nonconstant polynomial function p (e.g., $p(t) = t^2$) are unbounded, since $\lim_{t \rightarrow \pi/2} |\tan t| = \infty$ and $\lim_{t \rightarrow \infty} |p(t)| = \infty$



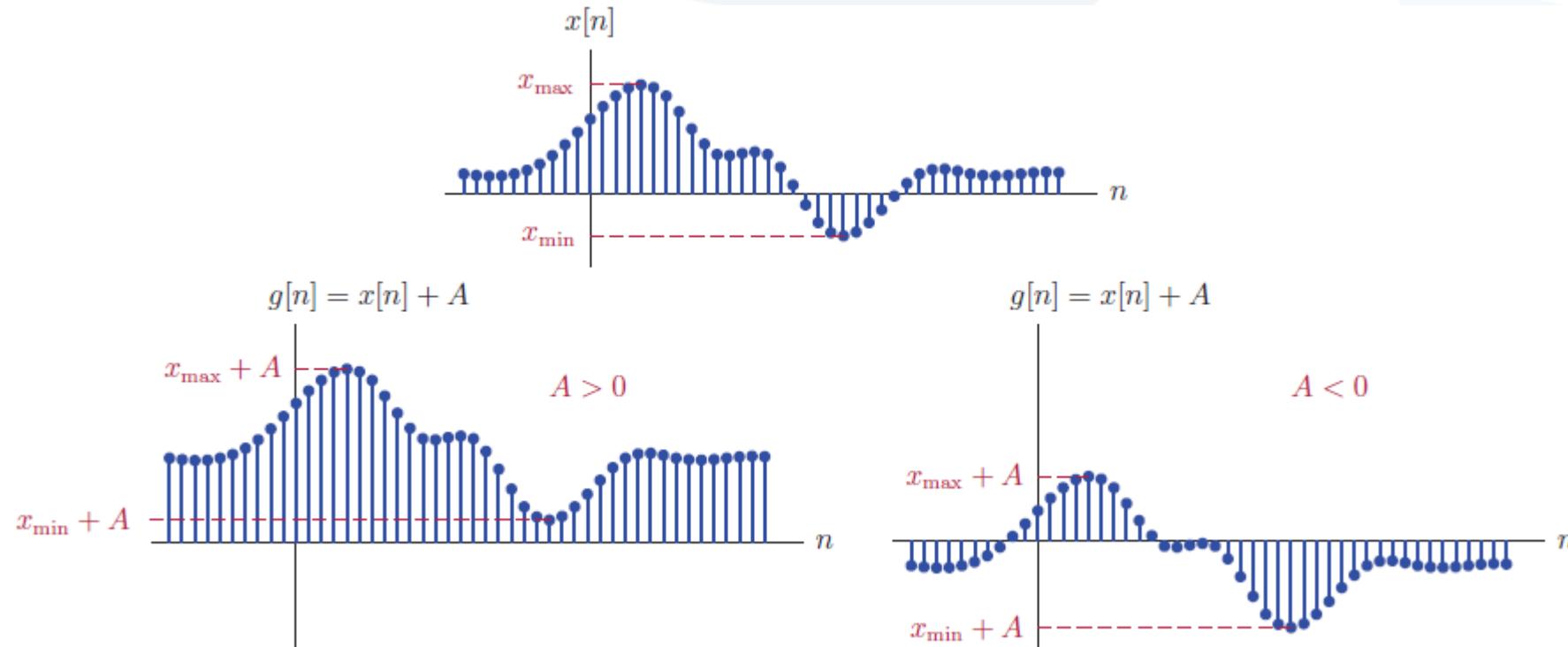
4. Discrete-Time Signals

- DT signals are not defined at all time instants. they are defined only at time instants that are **integer multiples** of a fixed time increment T , that is, at $t = nT$.
- Consequently, the mathematical model for a DT signal is a function $x[n]$ in which independent variable n is an integer, and is referred to as **sample index**.
- Sometimes DT signals are also **modeled** using mathematical functions: $x[n] = 3\sin[0.2n]$.
- In a DT signal the time variable is discrete, yet the **amplitude** is continuous.
- If, In a DT signal, we limit the amplitude values to a discrete set, the resulting signal is called a **digital signal** (two possible values is called **binary signal**).

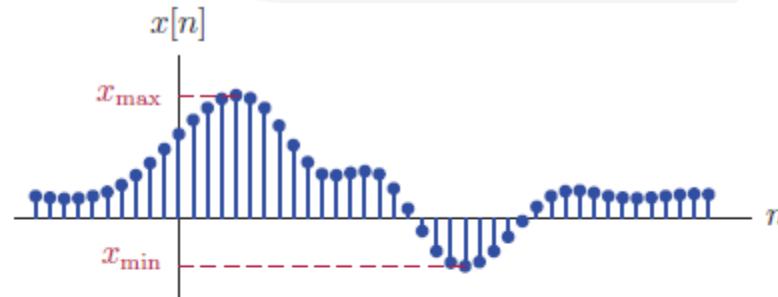
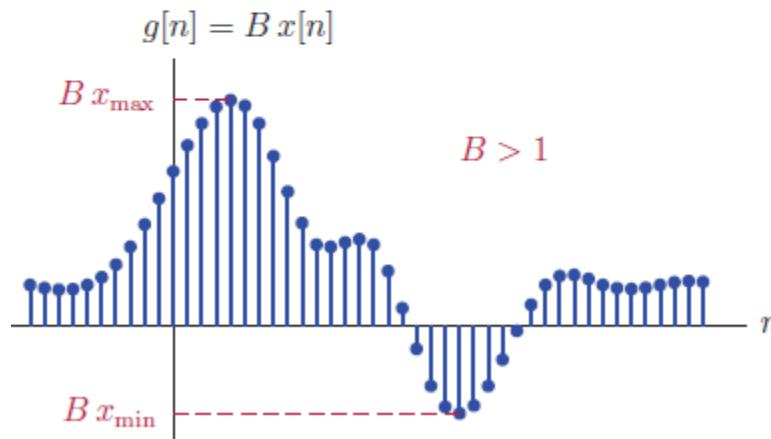
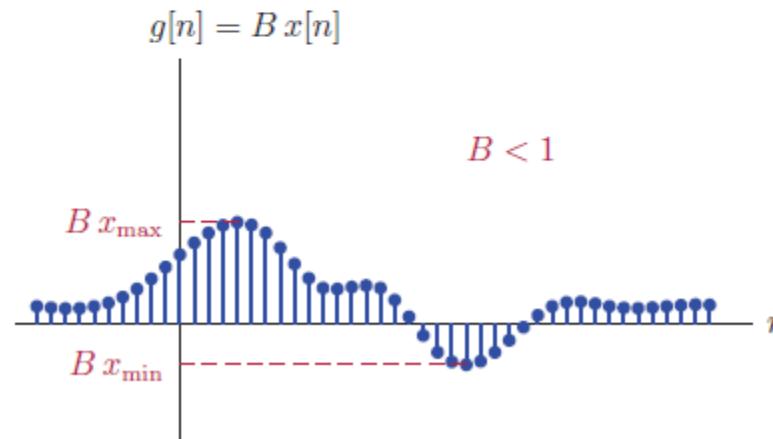


Signal operations

- **Amplitude shifting** maps the input signal $x[n]$ to the output signal g as given by $g[n] = x[n] + A$, where A is a real number.

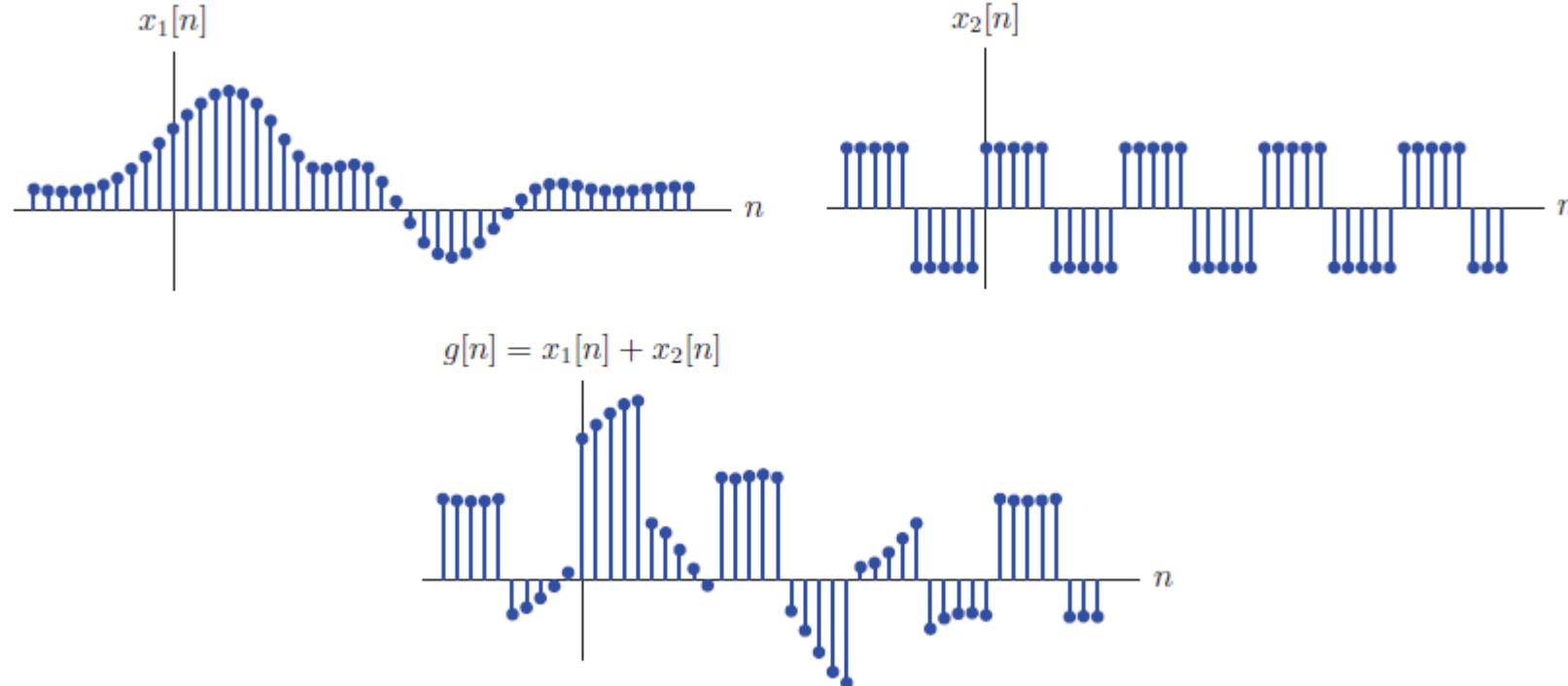


- **Amplitude scaling** maps the input signal x to the output signal g as given by $g[n] = Bx[n]$, where B is a real number.
- Geometrically, the output signal g is **expanded/compressed** in amplitude.

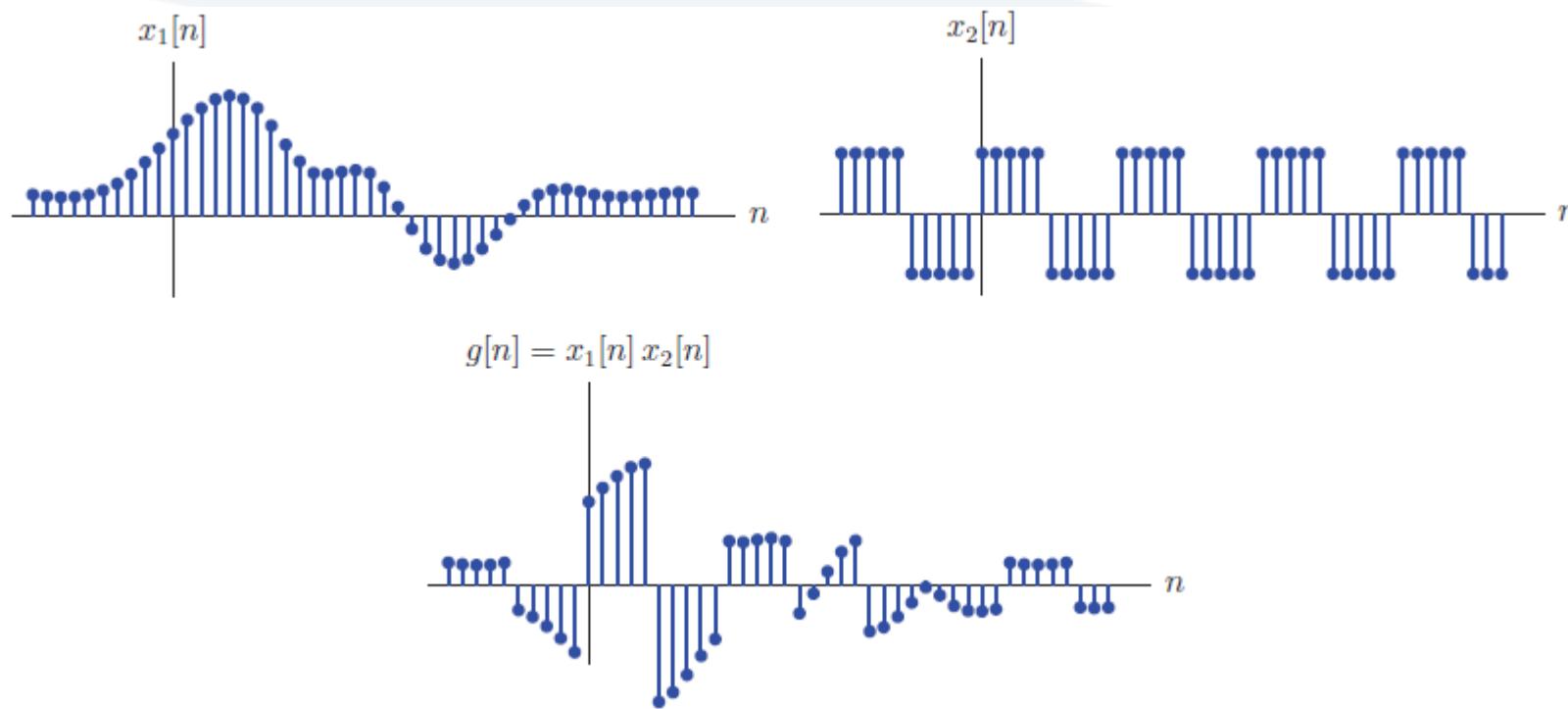


- **Addition and Multiplication** of two signals

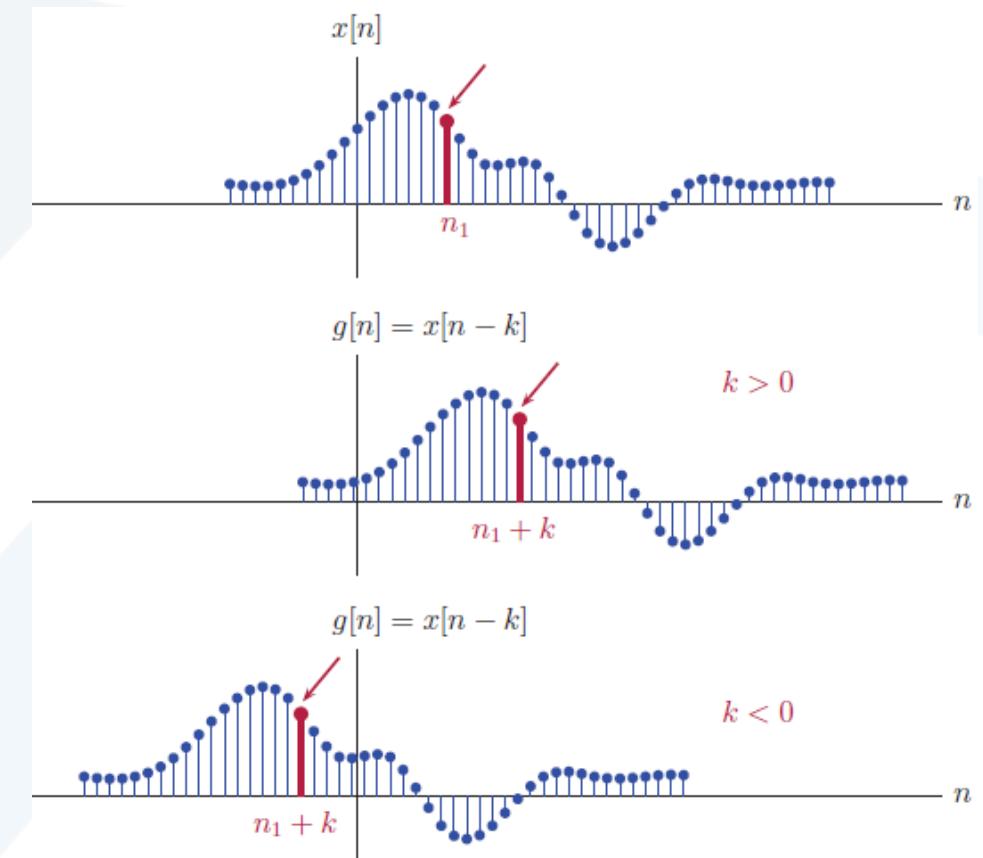
Addition of two signals is accomplished by adding the amplitudes of the two signals at each time instant. $g[n] = x_1[n] + x_2[n]$.



Multiplication of two signals is accomplished by multiplying the amplitudes of the two signals at each time instant. $g[n] = x_1[n] x_2[n]$.



- **Time shifting** (also called **translation**) maps the input signal x to the output signal g as given by: $g[n] = x[n - k]$; where k is an integer.
- Such a transformation shifts the signal (to the left or right) along the time axis.
- If $k > 0$, g is **shifted to the right** by $|k|$, relative to x (i.e., delayed in time).
- If $k < 0$, g is **shifted to the left** by $|k|$, relative to x (i.e., advanced in time).



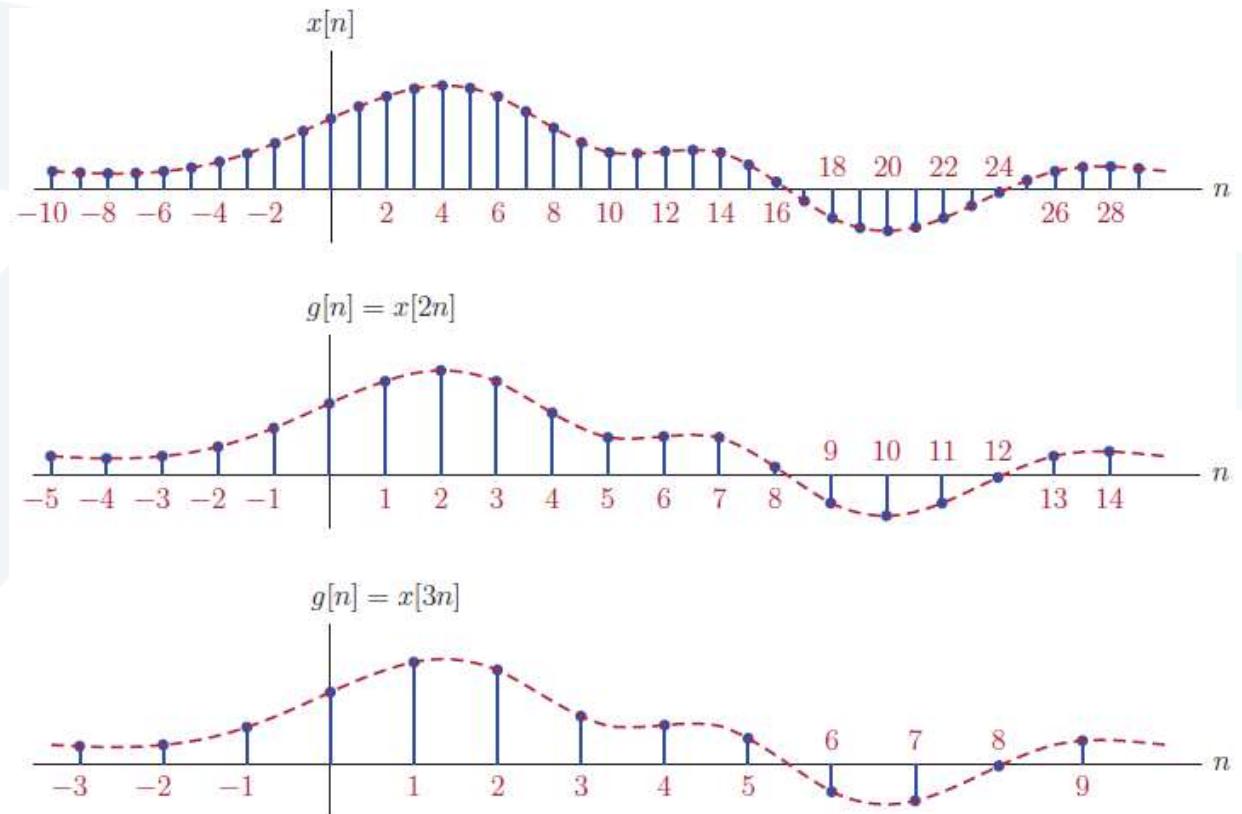
- Time scaling maps the input signal x to the output signal g as given by:

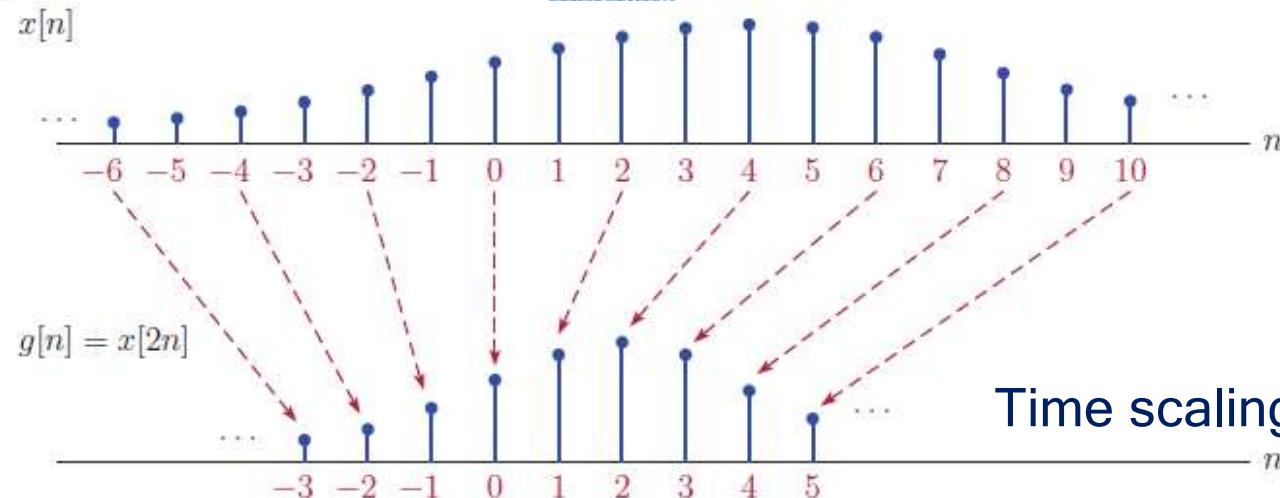
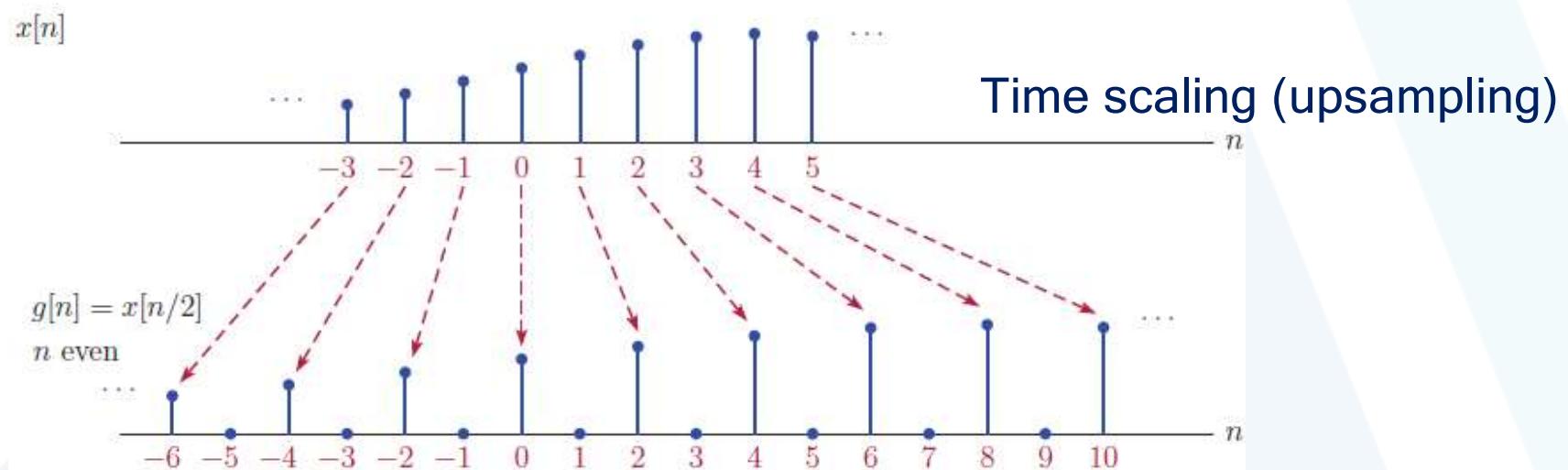
$$g[n] = x[kn]; \text{ downsampling}$$

and

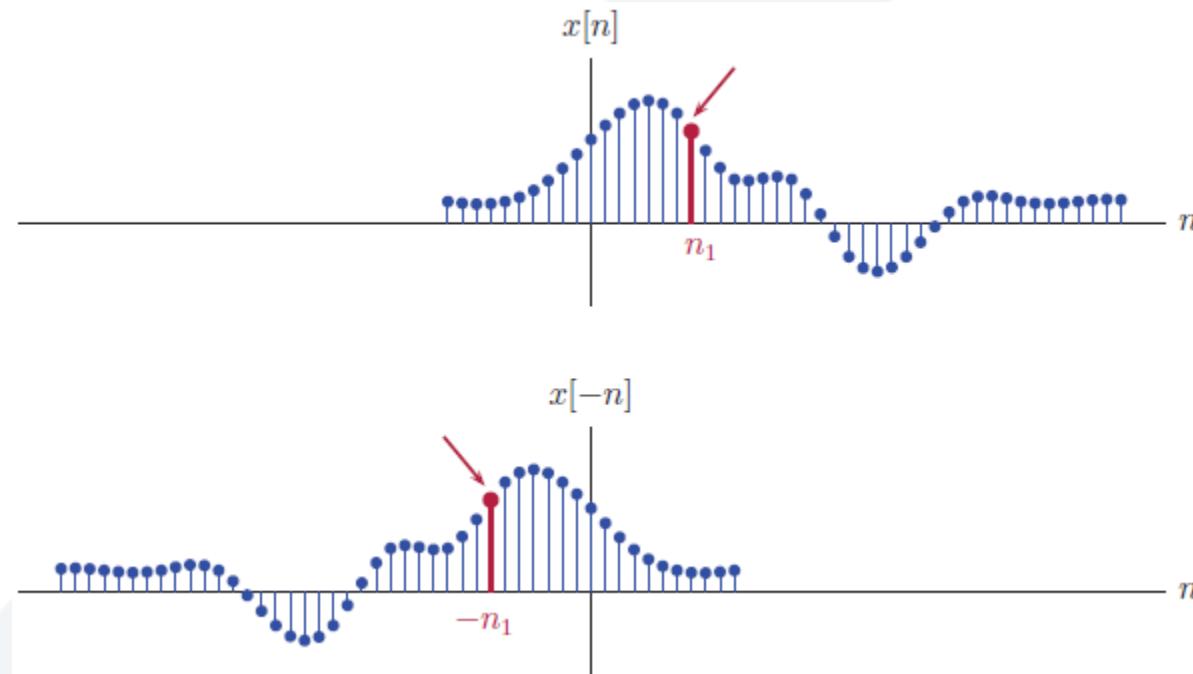
$$g[n] = x[n/k]; \text{ upsampling}$$

where k is a **strictly positive** integer.





- **Time reversal** (also known as **reflection**) maps the input signal x to the output signal g as given by $g[n] = x[-n]$.
- Geometrically, the output signal g is a reflection of the input signal x about the (vertical) line $n = 0$.



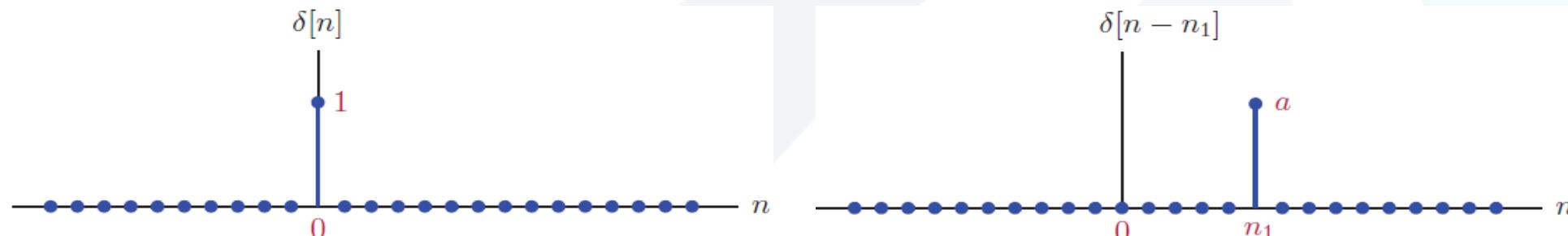
5. Basic building blocks for discrete-time signals

Unit-impulse Signal

- The **unit-impulse signal**, denoted δ , is defined by:

$$\delta[n] = \begin{cases} 1, & \text{if } n = 0 \\ 0, & \text{if } n \neq 0 \end{cases}$$

$$a\delta[n - n_1] = \begin{cases} a, & \text{if } n = n_1 \\ 0, & \text{if } n \neq n_1 \end{cases}$$

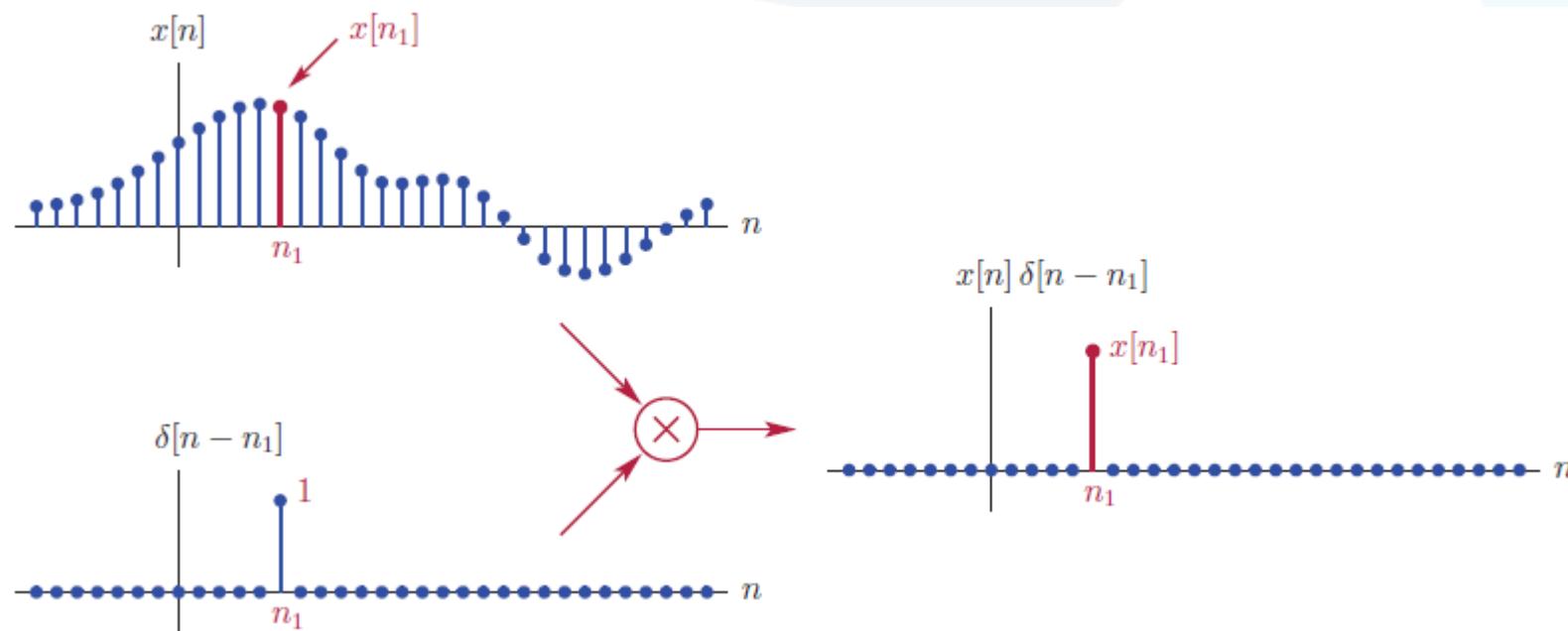


- Sampling property** of the unit-impulse signal:

$$x[n]\delta[n - n_1] = x[n_1]\delta[n - n_1] = \begin{cases} x[n_1], & n = n_1 \\ 0, & n \neq n_1 \end{cases}$$

- **Sifting property** of the unit-impulse signal

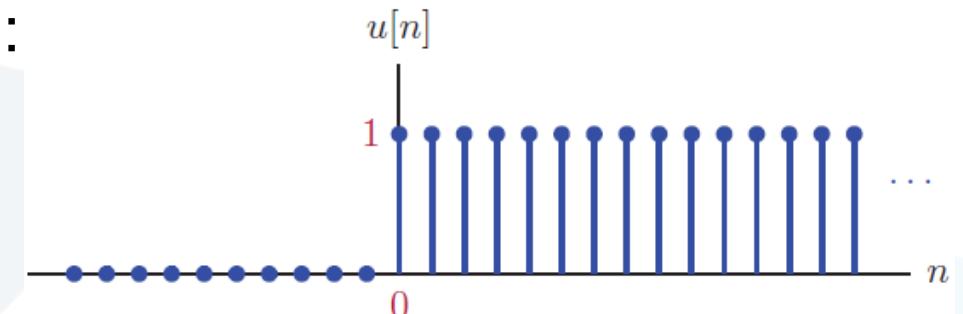
$$\sum_{n=-\infty}^{\infty} x[n] \delta[n - n_1] = x[n_1]$$



Unit-Step Signal

- The **unit-step signal**, denoted u , is defined as:

$$u[n] = \begin{cases} 1, & \text{if } n \geq 0 \\ 0, & \text{otherwise} \end{cases}$$

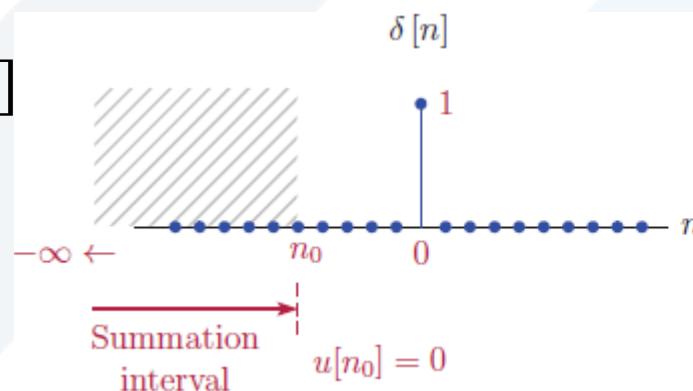
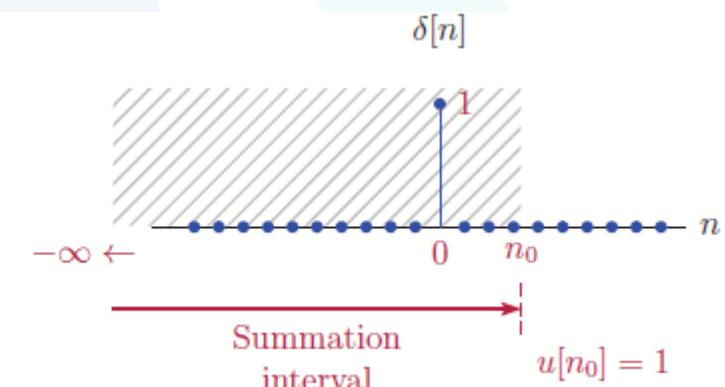


- Relationship between the unit-step signal and the unit-impulse signal:

$$\delta[n] = u[n] - u[n - 1]$$

- Conversely, $u[n] = \sum_{k=-\infty}^n \delta[k]$

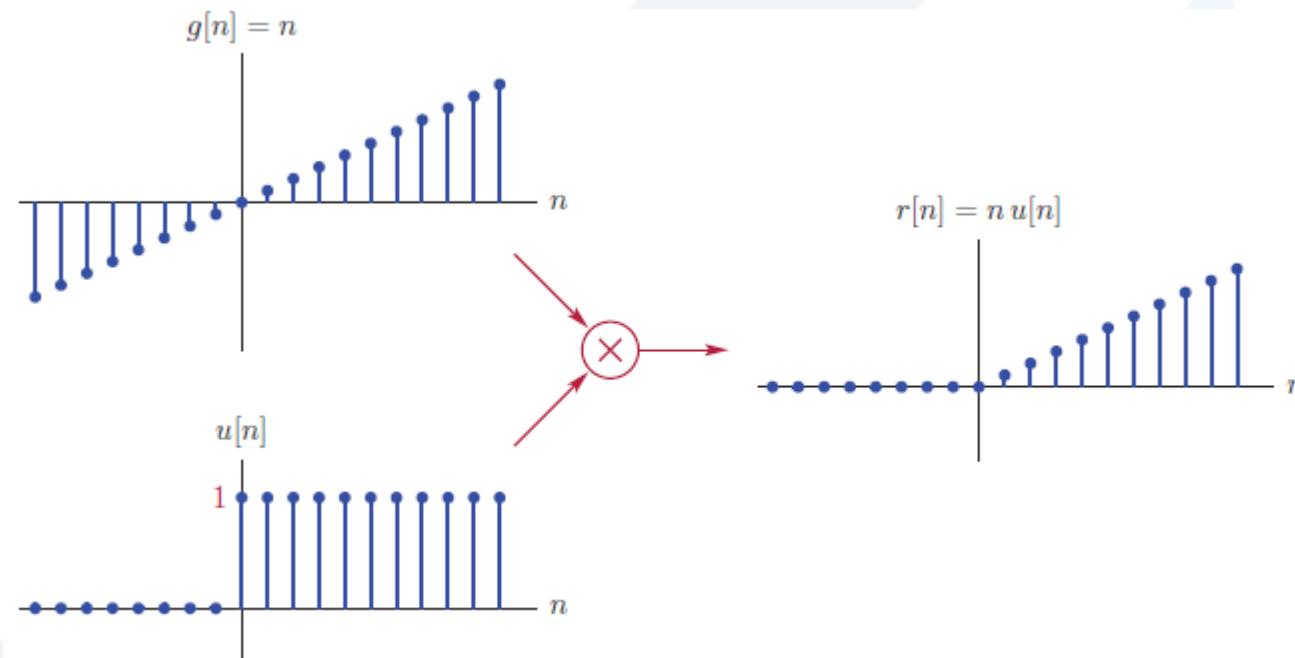
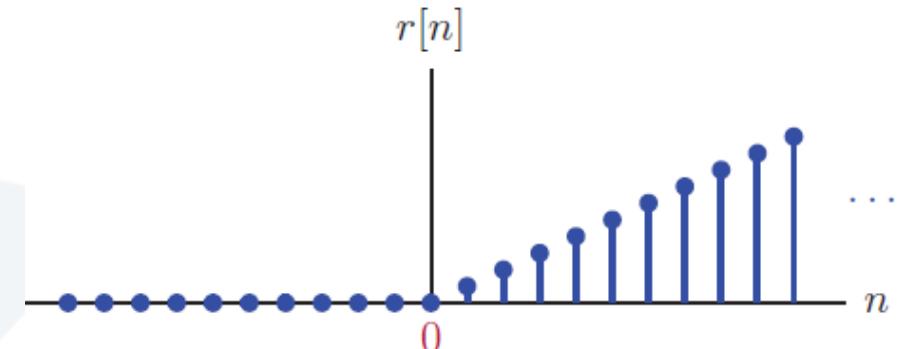
or, $u[n] = \sum_{k=0}^{\infty} \delta[n - k]$



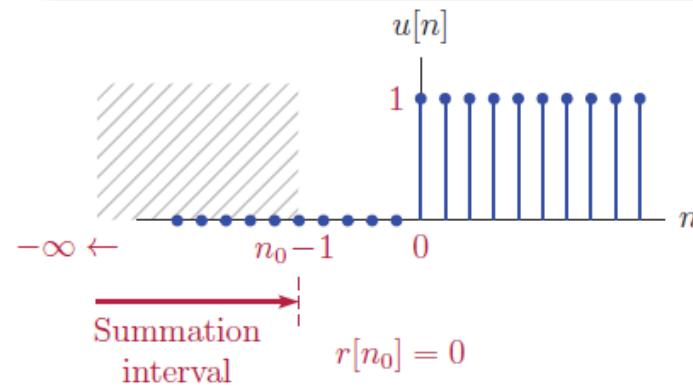
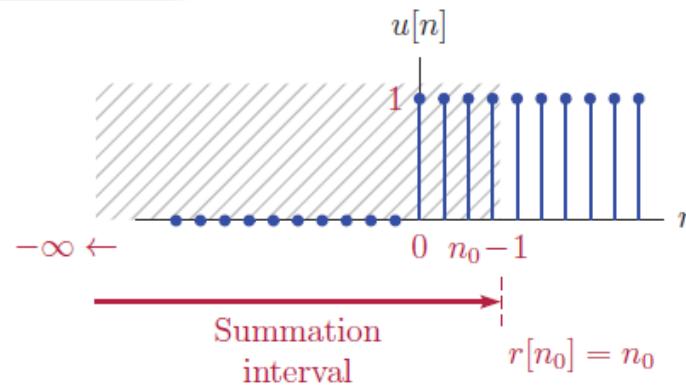
Unit-Ramp Signal

- The **unit-ramp signal**, denoted r , is defined as:

$$r[n] = \begin{cases} n, & \text{if } n \geq 0 \\ 0, & \text{otherwise} \end{cases} \quad \text{or, equivalently:} \quad r[n] = n u[n]$$

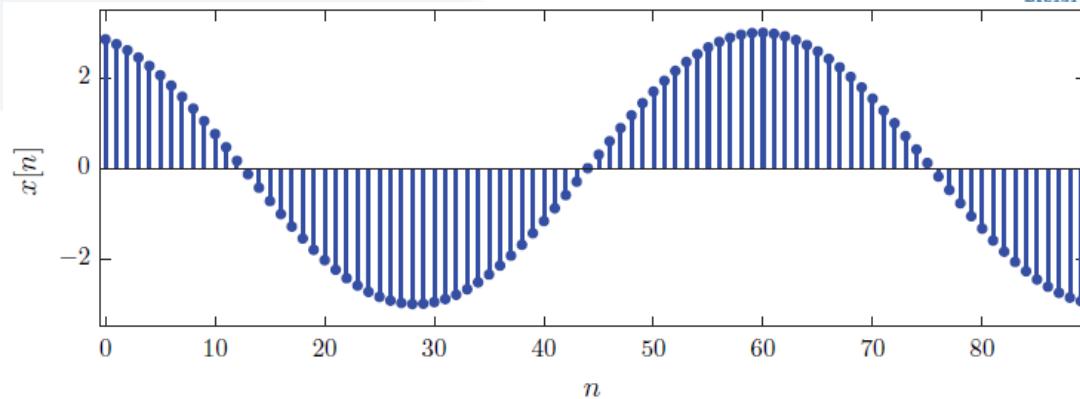


- Constructing a unit-ramp from a unit-step $r[n] = \sum_{n=-\infty}^{n-1} u[k]$

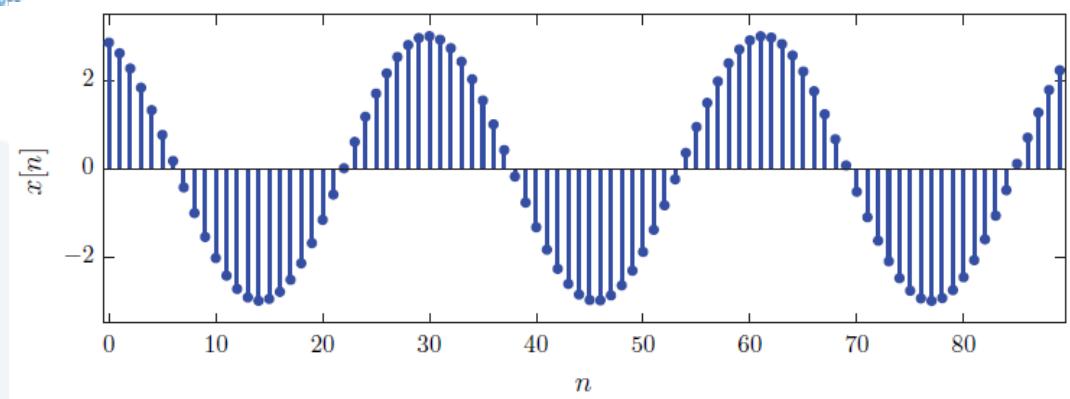


Sinusoidal Signal

- A **discrete-time sinusoidal signal** is a signal of the form: $x[n] = A \cos(\Omega_0 n + \theta)$ where A is the **amplitude** of the signal, Ω_0 is the **angular frequency** (rad), and θ is the initial phase angle (rad). $\Omega_0 = 2\pi F_0$ where F_0 is the **normalized frequency** (a dimensionless quantity).



$$x[n] = 3\cos(0.1n + \pi/10)$$



$$x[n] = 3\cos(0.2n + \pi/10)$$

A fundamental difference between a DT sinusoidal signal and its CT:

- For continuous-time sinusoidal signal $x_a(t) = A\cos(\omega_0 t + \theta)$: ω_0 is in rad/s.
- For discrete-time sinusoidal signal $x[n] = A\cos(\Omega_0 n + \theta)$: Ω_0 is in rad.
- Let us evaluate the amplitude of $x_a(t)$ at time instants that are integer multiples of T_s , and construct a discrete-time signal:

$$x[n] = x_a(nT_s) = A\cos(\omega_0 T_s n + \theta) = A\cos(2\pi f_0 T_s n + \theta)$$

- Since the signal $x_a(t)$ is evaluated at intervals of T_s , the number of samples taken per unit time is $1/T_s$. $x[n] = \text{Acos}\left(2\pi\left[f_0/f_s\right]n + \theta\right) = \text{Acos}(2\pi F_0 n + \theta)$
- The act of constructing a discrete-time signal by evaluating a continuous-time signal at uniform intervals is called **sampling**.
- The parameters f_s and T_s are referred to as the **sampling rate** and the **sampling interval** respectively.



Impulse decomposition for discrete-time signals

- Consider an arbitrary discrete-time signal $x[n]$. Let us define a new signal $x_k[n]$ by:

$$x_k[n] = x[k]\delta[n - k] = \begin{cases} x[k], & n = k \\ 0, & n \neq k \end{cases}$$

- The signal $x[n]$ can be reconstructed by: $x[n] = \sum_{k=-\infty}^{\infty} x_k[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n - k]$

Periodic discrete-time signals

- A discrete-time signal is said to be **periodic** if it satisfies: $x[n] = x[n + N]$ for all values of the integer index n and for a specific value of $N \neq 0$. The parameter N is referred to as the **period** of the signal.

- The period of a periodic signal is **not unique**. That is, a signal that is periodic with period N is also periodic with period kN , for every (strictly) positive integer k , $x[n] = x[n + kN]$.
- The smallest period with which a signal is periodic is called the **fundamental period**.
- The normalized **fundamental frequency** of a discrete-time periodic signal is $F_0 = 1/N$.

Periodicity of discrete-time sinusoidal signals

$$\begin{aligned} A\cos(2\pi F_0 n + \theta) &= A\cos(2\pi F_0[n + N] + \theta) \\ &= A\cos(2\pi F_0 n + 2\pi F_0 N + \theta) \end{aligned}$$

$$2\pi F_0 N = 2\pi k \Rightarrow N = k/F_0$$

N must be an **integer value**

- **Example 6:** Periodicity of a discrete-time sinusoidal signal

Check the periodicity of the following discrete-time signals:

a. $x[n] = \cos(0.2n)$

b. $x[n] = \cos(0.2\pi n + \pi/5)$

c. $x[n] = \cos(0.3\pi n - \pi/10)$

a. $x[n] = \cos(0.2n)$

$$\Omega_0 = 0.2 \Rightarrow F_0 = \Omega_0/2\pi = 0.2/2\pi = 0.1/\pi \Rightarrow N = k/F_0 = 10\pi k$$

Since no value of k would produce an integer value for N , the signal is **not periodic**.

b. $x[n] = \cos(0.2\pi n + \pi/5)$

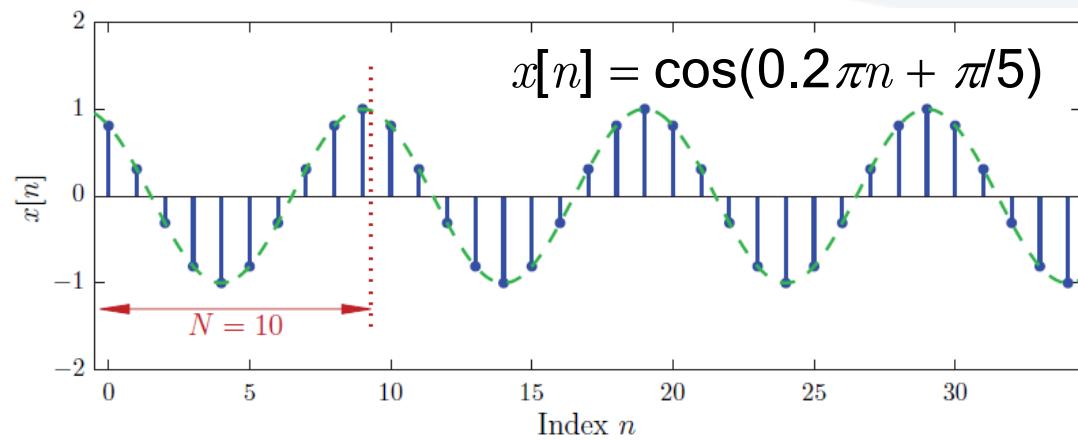
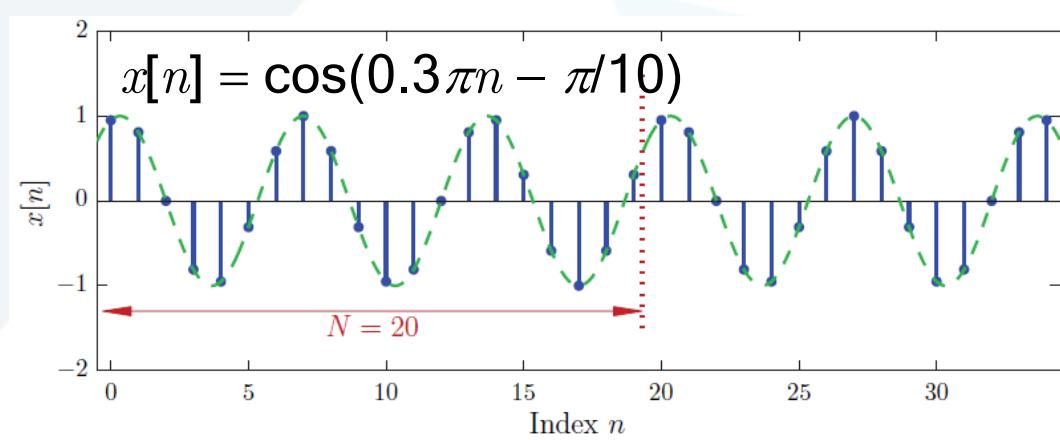
$$\Omega_0 = 0.2\pi \Rightarrow F_0 = \Omega_0/2\pi = 0.2\pi/2\pi = 0.1 \Rightarrow N = k/F_0 = 10k$$

For $k = 1$ we have $N = 10$ samples as the **fundamental period**.

c. $x[n] = \cos(0.3\pi n - \pi/10)$

$$\Omega_0 = 0.3\pi \Rightarrow F_0 = \Omega_0/2\pi = 0.3\pi/2\pi = 0.15 \Rightarrow N = k/F_0 = k/0.15$$

For $k = 3$ we have $N = 20$ samples as the **fundamental period**.



- **Example 7:** Periodicity of a multi-tone discrete-time sinusoidal signal

Comment on the periodicity of the two-tone discrete-time signal:

$$x[n] = 2\cos(0.4\pi n) + 1.5\sin(0.48\pi n)$$

$$x[n] = x_1[n] + x_2[n]$$

$$x_1[n] = 2\cos(\Omega_1 n)$$

$$\Omega_1 = 0.4\pi \Rightarrow F_1 = \Omega_1/2\pi = 0.4\pi/2\pi = 0.2$$

$$\Rightarrow N = k_1/F_1 = 5k_1$$

For $k_1 = 1$ we have $N_1 = 5$ samples as the fundamental period.

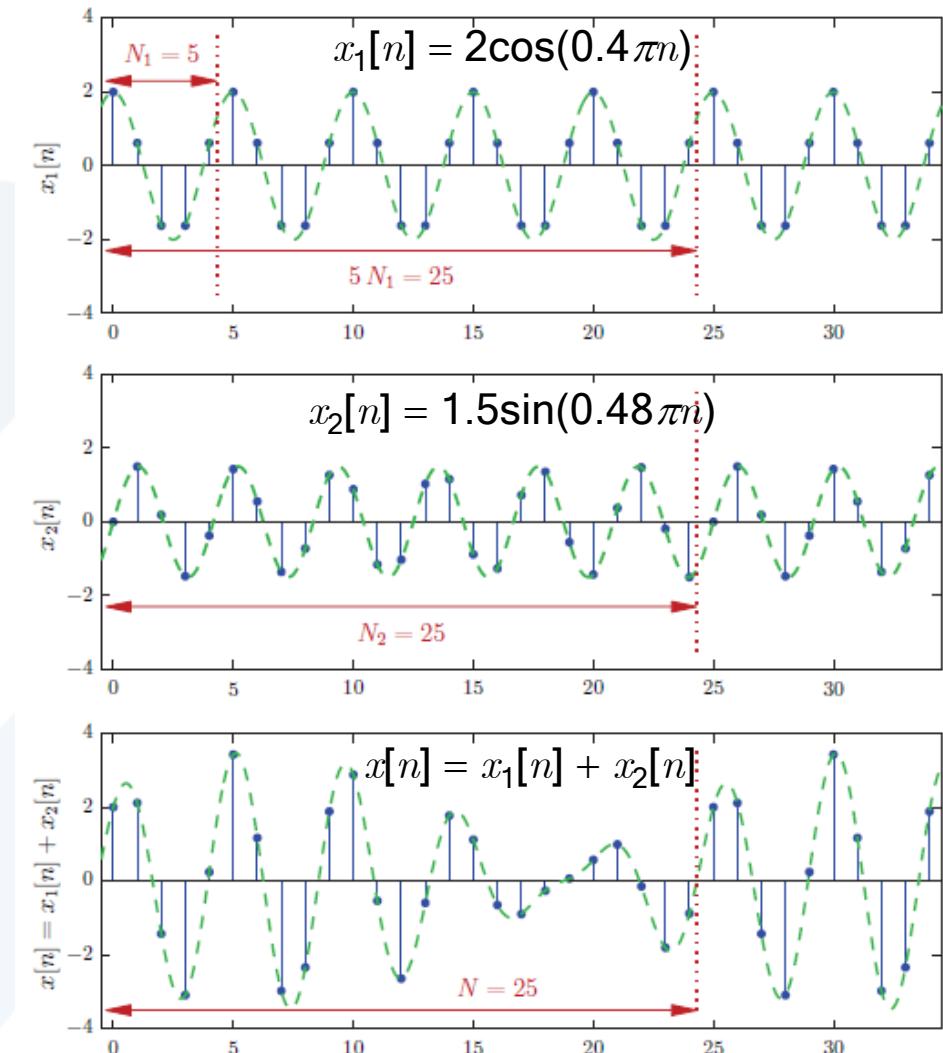
$$x_2[n] = 1.5\cos(\Omega_2 n)$$

$$\Omega_2 = 0.48\pi \Rightarrow F_2 = \Omega_2/2\pi = 0.48\pi/2\pi = 0.24$$

$$\Rightarrow N_2 = k_2/F_2 = k_2/0.24$$

For $k_2 = 6$ we have $N_2 = 25$ samples as the fundamental period.

$$\Rightarrow N = 25$$



Energy and power definitions

- The **energy** of a discrete time signal $x[n]$ is given by $E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2$
- The **average power** of a discrete time signal $x[n]$ is given by:

periodic complex signal $P_x = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2$

non-periodic complex signal $P_x = \lim_{M \rightarrow \infty} \frac{1}{2M+1} \sum_{n=-M}^{M} |x[n]|^2$

- **Energy signals** are those that have finite energy and zero power, i.e., $E_x < \infty$, and $P_x = 0$.
- **Power signals** are those that have finite power and infinite energy, i.e., $E_x \rightarrow \infty$, and $P_x < \infty$.

- **Example 8: Energy and power signals**

Determine whether the sequence $x[n] = a^n u[n]$ is an energy signal or a power signal or neither for the following cases: (a) $|a| < 1$, (b) $|a| = 1$, (c) $|a| > 1$.

$$E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=0}^{\infty} |a^{2n}|, \quad P_x = \lim_{M \rightarrow \infty} \frac{1}{2M+1} \sum_{n=-M}^M |x[n]|^2 = \lim_{M \rightarrow \infty} \frac{1}{2M+1} \sum_{n=0}^M |a^{2n}|$$

$$(a) \quad E_x = \sum_{n=0}^{\infty} |a^{2n}| = \frac{1}{1 - |a|^2} < \infty,$$

$$P_x = \lim_{M \rightarrow \infty} \frac{1}{2M+1} \sum_{n=0}^M |a^{2n}| = \lim_{M \rightarrow \infty} \frac{1}{2M+1} \frac{1 - |a|^{2(M+1)}}{1 - |a|^2} = 0$$

The signal $x[n] = a^n u[n]$ is an energy signal for $|a| < 1$.

(b) $E_x = \sum_{n=0}^{\infty} |a^{2n}| \rightarrow \infty,$

$$P_x = \lim_{M \rightarrow \infty} \frac{1}{2M+1} \sum_{n=0}^M |a^{2n}| = \lim_{M \rightarrow \infty} \frac{M+1}{2M+1} = \frac{1}{2}$$

The signal $x[n] = a^n u[n]$ is an power signal for $|a| = 1$.

(c) $E_x = \sum_{n=0}^{\infty} |a^{2n}| \rightarrow \infty,$

$$P_x = \lim_{M \rightarrow \infty} \frac{1}{2M+1} \sum_{n=0}^M |a^{2n}| = \lim_{M \rightarrow \infty} \frac{1}{2M+1} \frac{|a|^{2(M+1)} - 1}{|a|^2 - 1} \rightarrow \infty$$

The signal $x[n] = a^n u[n]$ is neither an energy signal nor a power signal for $|a| > 1$.

Symmetry properties

Even and odd symmetry

- A **real-valued** signal is said to have **even symmetry** if it has the property: $x[-n] = x[n]$ for all values of n .
- A **real-valued** signal is said to have **odd symmetry** if it has the property: $x[-n] = -x[n]$ for all values of n .

Decomposition into even and odd components

- Every **real-valued** signal $x[n]$ has a **unique** representation of the form: $x[n] = x_e[n] + x_o[n]$; where the signals x_e and x_o are **even** and **odd**, respectively.
- In particular, the signals x_e and x_o are given by:

$$x_e[n] = \frac{1}{2}(x[n] + x[-n]) \text{ and } x_o[n] = \frac{1}{2}(x[n] - x[-n])$$

Symmetry properties for complex signals

- A **complex-valued** signal is said to have **conjugate symmetric** if it has the property: $x[-n] = x^*[n]$ for all values of n .
- A **complex-valued** signal is said to have **conjugate antisymmetric** if it has the property: $x[-n] = -x^*[n]$ for all values of n .

Decomposition of complex signals

- Every **complex-valued** signal $x[n]$ has a **unique** representation of the form: $x[n] = x_E[n] + x_O[n]$; where the signals x_E and x_O are **conjugate symmetric** and **conjugate antisymmetric**, respectively.
- In particular, the signals x_E and x_O are given by:

$$x_E[n] = \frac{1}{2}(x[n] + x^*[-n]) \text{ and } x_O[n] = \frac{1}{2}(x[n] - x^*[-n])$$