Ramez Koudsieh, Ph.D.

Faculty of Engineering
Department of Robotics and Intelligent Systems
Manara University

Signal Representation and Modeling https://manara.edu.sy/ 2024-2025 1/81


https://manara.edu.sy/

Chapter 1
Signal Representation and Modeling

1. Signals and Systems
2. Continuous-Time Signals
3. Basic building blocks for continuous-time signals
4,  Discrete-Time Signals
5.  Basic building blocks for discrete-time signals
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» The broadcast example (a commentator in a radio broadcast studio) includes
acoustic, electrical and electromagnetic signalis.
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1. Signhals and Systems

= A signal is a function of one or more variables that conveys information about
some (usually physical) phenomenon.

* independent variable = time, space, ..
= dependent variable = the function value itself.

» Some examples of signals include:

a voltage or current in an electronic circuit.
the position, velocity, or acceleration of an object.
a force or torque in a mechanical system.

a flow rate of a liquid or gas in a chemical process.

a digital image, digital video, or digital audio.
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Classification of Signals
= Continuous-time and discrete-time

« A continuous-time (CT) signal is a signal that is specified for every value of
time t.

« A discrete-time (DT) signal is a signal that is specified only at discrete
values of t.
* Analog and digital signals

 An Analog signal is a signal whose amplitude can take on any value in a
continuous range.

« A digital signal is a signal whose amplitude can take on only a finite number
of values.
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= Periodic and Nonperiodic Signals
« A periodic signal is one that repeats itself. A CT signal z(t) is said to be
periodic with period T if z(t) = (¢t + T) for all ¢t € R. Likewise, a DT signal

2[n] is said to be periodic with period N if 2[n] = 2fn + N] for all n € Z.

« A signal is aperiodic if it is not periodic.
x(r)
NN N N
L L L~

L

€ T

3"“ A periodic signal of period T
= Deterministic or random signals

A signal whose physical description is known completely, in either a
mathematical form or a graphical form, is a deterministic signal.
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« A signal whose values cannot be predicted precisely but are known only in
terms of probabilistic description, such as mean value or mean-squared
value, is a random signal.

= Energy and power signals
« A signal with finite energy is an energy signal, and a signal with finite and
nonzero power Iis a power signal.

= A system is an entity that processes one or more input signals in order to
produce one or more output signals.

X > System > )

system with single-input and single-output (SISO)
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Input Signals System
Xn >

system with many inputs and outputs

Classification of Systems
» Linear and nonlinear systems

» Vi

» Vo

» Vm

» Time-Varying and Time-Invariant Systems
« A time-varying system is one whose parameters vary with time.

Output Signals

* In a time-invariant system, a time shift (advance or delay) in the input signal

leads to the time shift in the output signal.
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» Memoryless (static) and with memory (dynamic) systems

« A memoryless system is one in which the current output depends only on
the current input; it does not depend on the past or future inputs.

« A system with memory is one in which the current output depends on the
past and/or future input.

= Causal and noncausal systems

A causal system is one whose present response does not depend on the
future values of the input.

= Continuous-time and discrete-time systems
« CT system is a system whose inputs and outputs are CT signals.

« DT system is a system whose inputs and outputs are DT signals.
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If a CT signal is sampled, the resulting signal is a DT signal. We can process
a CT signal by processing its samples with a DT system.

Analog and digital systems
* Analog system is a system whose inputs and outputs are analog signals.
« Digital system is a system whose inputs and outputs are digital signals.

Invertible and noninvertible systems

 An invertible system when we can obtain the input z(¢) back from the
corresponding output y(t) by some operation.

Stable and unstable systems

A system is said to be stable if every bounded input applied at the input
terminal results in a bounded output.
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« This type of stability is also known as the stability in the BIBO (bounded-
input/bounded-output) sense.

Examples of Systems:

= One very basic system is the resistor-capacitor (RC) network. Here, the input
would be the source voltage v, and the output would be the capacitor

voltage v..
R
—|_ I —
¢~ RN
r(t) vs(t) it) vC " ve(t) v(®)
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= Communication System |
Estimate of
Message Transmitted Received Message
Signal Signal Signal Signal
> Transmitter > Channel - Receiver >
General Structure of a Communication System
» Feedback Control System
Reference
Input Error Output
»—(——— Controller > Plant > >
A
- Sensor
Feedback
Signal
General Structure of a Feedback Control System
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= The Signals and Systems approach has broad application: electrical,
mechanical, optical, acoustic, biological, financial,
.t{.”
rm y(t)
] LA
R0 system T/ \/
-"H[HJ_
=, T1(£) ro(t) ra(t)
hg(."]l { —» s;s?tr:ekm = }/\r
———  T2(1)
sound in sound out
B q e —s| ohone | Ww
system
sound out
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Mathematical Modeling of Signals
= Understand the characteristics of the signal in terms of its behavior in time
and in terms of the frequencies it contains (signal analysis).

» Develop methods of creating signals with desired characteristics (signal
synthesis).

» Understand how a system responds to a signal and why (system analysis).

= Develop methods of constructing a system that responds to a signal in some
prescribed way (system synthesis).

» The mathematical model for a signal is in the form of a formula, function,
algorithm or a graph that approximately describes the time variations of the
physical signal.
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2. Continuous-Time Signals
= Consider a(¢), a mathematical function of time chosen to approximate the

strength of the physical quantity at the time instant .

» The signal (1), is referred to as a continuous-time signal or an analog signal. ¢
Is the independent variable, and z is the dependent variable.

A segmeht from the vowel “0” of the word “hello”

= Some signals can be described analytically. For (1) = el —e >0
ex., the function z(t) = 5sin(12t), or by segments as: .
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Signal operations
= Amplitude shifting maps the input signal x to the output signal g as given by
g(t) = 2(t) + A, where A is a real number.

Tmax T —4

_/

Tmin T A

A<0

Tmin T Arp-———--—-==
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» Amplitude scaling maps the input signal z to the output signal ¢ as given by
9(t) = Ba(t), where B is a real number.

= Geometrically, the output signal g is expanded/compressed in amplitude.

x (t)
Tmax [
—//\_\ |
Tin F————————— v
g(t)=Bzx(t) S B0
B Tmax [ 7
B>1 o
‘/ B;?-!lt].'-'lx 7\_—‘\
/v t _/ — |
\/ BJ-!lnin ———————————
Bryw F————————-
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» Addition and Multiplication of two signals

Addition of two signals is accomplished by adding the amplitudes of the two
signals at each time instant. g(t) = x;(?) + z,(?).

z1 (1) T9 (1)

A ARAARAARAA
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Multiplication of two signals is accomplished by multiplying the amplitudes of

the two signals at each time instant. g(t) = x4(%).x,(?).

Iy {f)

—//\'\ P e

t1
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= Time shifting (also called translatiohﬂ) maps the input signal z to the output
signal g as given by: ¢(?) = 2(t —t,); where ¢, is a real number.

= Such a transformation shifts the signal
(to the left or right) along the time axis. _//\,\
| P A— ;
» If t,> 0, gis shifted to the right by |z, v NS
relative to z (i.e., delayed in time).

= If t, < 0, g is shifted to the left by |¢/,
relative to z (i.e., advanced in time). htte NS

g(t) = z(t — ta)
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= Time scaling (also called dilation) maps the input signal x to the output signal
g as given by: ¢(t) = z(at); where a is a strictly positive real number.

= Such a transformation is associated "

with a compression/expansion along j\_\

the time axis. . ’
» If o > 1, g is compressed along the oo

horizontal axis by a factor of q, relative )(\\ L

to z. t) r

» If a < 1, ¢g is expanded (stretched)

along the horizontal axis by a factor of ,
1/a, relative to z. R o
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= Time reversal (also known as reflecfi6n) maps the input signal z to the output
signal g as given by ¢(t) = x(-—t).

= Geometrically, the output signal ¢ is a reflection of the input signal = about the
(vertical) line t= 0.
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» [ntegration and differentiation
Given a continuous-time signal z(t), a new signal ¢(¢f) may be defined as its

time derivative in the form: ¢(t) = da(t)/dt. Similartly, a signal can be defined as
the integral of another signal in the form: g(t) = j z(7)dr

, 1
in(t)=C dvg (1) 1, (1) = I Itw v, (7)dr
dt o (1)

N N A ,
VLV 1 = 3
| V\ A /\

— [ \4 NS

iIdeal capacitor ideal inductor
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= Sum of periodic signals

For two periodic signals z; and xz, with fundamental periods T, and T,
respectively, and the sum y = z; + x,:

* The sum y is periodic if and only if the ratio 7,/T, is a rational number (i.e.,
the quotient of two integers).

» If yis periodic, its fundamental period is rT; (or equivalently, ¢qT5, since rT,

= ¢qT,), where T,/T, = ¢/r and ¢ and r are integers and coprime. (Note that
rT i1s simply the least common multiple of 7, and T5).

For example 2(?) = sin(271.5t) + sin(272.51%)
T:5T2:3T1 :2 S.
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3. Basic building blocks for continuous-time signals
Unit-impulse function

= The unit-impulse function (Dirac delta function or delta function), denoted o, is

defined by:
0, ift =0

o) :{undeﬁned, ife—o M | o=

= Technically, o0 is not a function in the ordinary sense. Rather, it is what is
known as a generalized function.

5(t) ﬂfﬁ'(t—h)
‘l ‘:’f
0 t 0 i t
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1/a, |t| < al2

= Define q(t) = {0 |t| > a/2

Clearly, for any choice of q, joo q(t)dt =1

= The function 6 can be obtained as the following limit: 5(¢) = lim ¢(¢)

a—0
q(t) q(t) o(t)
a— 0
Ny Al
—— —
— 1/a
1/a ]
t - t t

| | >l a e !

g ) 1%

Sampling property. For any continuous function f and any real constant i,

[t — t1) = At) At — ty).
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= Sifting property. For any continuous function fand any real constant t,:
| rse -t)dt = ft)

f(t1)

A SN

o N\ f£t)6(t—t)

N
o /®—’ Tf{m
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Unit-Step Function

* The unit-step function (also known as the Heaviside function), denoted u, is
defined as: w(t)

1, t=0
“(t):{o t<0 1

= A time shifted version of the unit-step function: u(f)
1, t>t gl
_ I =Y
U/(t tl) {0, t<t1 t
iy

» Signals begin at t = 0 (causal signals) can be described in terms of ().
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= Using the unit-step function to turn a signal on/off at a specified time instant:

sin(2z fit), t=>t sin2z fit), t<t,
fv(t)U(t—t)={ ’ : x(t)u(—t+t)={
! 0, t <t o, t >t
u(t —t) w(—t+1t)
| b t 2 () — sin (20 fud) w(E— &) b f u(—t + )

\

in (27 fot )

Mnn
T p= i
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4 () d(t)
‘ | 1 1
t _ t
— 00 Ly 0 —00 0 to
- -
Integration . Integration
interval u (to) =0 interval u(tp) =1
t
; a(t) [ a( dr
ut) = [ 5(r)de |
—00
1
I
du(t) o /)
o(t) = /1
dt . . t ;
—a/2 | a/2 —a/2 | a/2
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Signum Function
* The signum function, denoted sgn, is defined as:

-

1 ift>0

sgnt =< 0 ift=0

k—l ift <0

* From its definition, one can see that the signum function simply computes the
sign of a number. sgnt
|
B I T

—1
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Unit-pulse function
» The unit-pulse function (also called the unit-rectangular pulse function),
denoted rect, is given by:
1, if —i<t<i
tt=[1(¢)=1" - AN
e (@) {O, otherwise

= Due to the manner in which the rect function is used in practice, the actual

value of rectt at t = 72 is unimportant. Sometimes # values are used.
TI(t)
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[T(t) =u(t+35)—u(t-7)

U (t + %)
: t
o I(t)
+ \
w(t— 1) (+)—
— / t
1 — —05 1 05
t
0.5
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= Constructing a unit-pulse function from unit- impulse functions:

[1(t) = u(t + %) —u(t — %) _ J‘E:/Q 5(2)dr — JA_t;l/Q 5(2)dr - J.

t+1/2 1,
| 8(n)dr =

t+1

t—1/2

1 1 1 1
t—5<0andt+§>(): I, —5<t <5

/9
o(r)dr

t=1/2 , otherwise 0, otherwise
J () & (t)
‘ | ] |
| t | i
iy — l-, ity + 5 ll[| = bg + _l1
}..__...| _ Il..(_,..JI '
Integration 4 (t) Integration
interval ] interval
lo — l, o + 5
P b
Ilm{:-;_*,l'm.iuml
interval
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Unit-Ramp Function 9()

= The unit-ramp function, denoted r, is
defined as:

. N
T(t):{t, ift >0 /@_.

0, otherwise u(t) t
1 p—
or, equivalently: r(t) = tu(z).
i
= Constructing a unit-ramp u(f u t)
function from a unit-step: l /
t _ t t
r(t) = J' w(t)dt oo w0 oot 0
0 i e i
Mol ") =0 fegration ) 4,
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Unit Triangular Function
= The unit triangular function (unit-triangular pulse function), A(t)
denoted tri, is defined as: .
“’ wit = Ay < |1l il <1 1
- o, otherwise /\
t
—1 1

= Constructing a unit-triangle using unit-ramp functions:
A)=r(t+1)=2r(t)+r(t-1)

r (t—y r(t+1)—2r(t) r(t+1)—2r(t)+r(t—1)
' t t t

-1 1 | -1 N -1 1
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Cardinal Sine Function
. : . L : sin(7ct)
= The cardinal sine function, denoted sinc, is given by sinct = —
7T
sin(mt)
mt
|
e, X il N -l
" -2\/4 0 |\/2 3 N
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Sinusoidal Signal
= A real sinusoidal function is a function of the form:

2(t) = Acos(w,t + 6)
where A is the amplitude of the signal, @, is the radian frequency (rad/s), and

@is the initial phase angle (rad), all are real constants.
w0, = 27f, where f, is the frequency (Hz), T, = 1/f, is the period (s).

x (t)
— 2m — 6
\/ g;.l,rf{] \/

-
1

Al

\ /
\/ 0
o,

A

1
To = —

.]FI.']
2024-2025 39/81
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Complex Exponential Function

= A complex exponential function is a function of the form a(¢) = Ae, where A
and A are complex constants.

= A complex exponential can exhibit one of a number of distinct modes of
behavior, depending on the values of A and A.

* For example, as special cases, complex exponentials include real
exponentials and complex sinusoids.

= A real exponential function is a special case of a complex exponential
2(t) = AeM, where A and A are restricted to be real numbers.

= A real exponential can exhibit one of three distinct modes of behavior,
depending on the value of A4, as illustrated below.
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= If 1> 0, 2(¢?) increases exponentially as ¢ increases (growing exponential).
» If 1< 0, 2(t) decreases exponentially as ¢ increases (decaying exponential).

= If =0, =(t) simply equals the constant A.

AM AeM AeM
A A A
/ r r \ r
A>0 A=0 A<0
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Complex Sinusoidal Function
= A complex sinusoidal function is a special case of a complex exponential
(1) = AeM, where A is complex and A is purely imaginary (i.e., Re{i} = 0).
= That is, a complex sinusoidal function is a function of the form x(t) = A&/,
where A is complex and w Is real.

= By expressing A in polar form as A = |A|e/? (where @ is real) and using Euler’s
relation, we can rewrite z({) as: z(t) = |4|cos(wt + 6) + j|A|sin(wt + 6)

Re{z(1)} Im{z(t)}
» Thus, Re{z} and Im{x} are the same except for a time shift.

= Also, z is periodic with fundamental period T = 27/|lo| and fundamental
frequency |a).
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|A|cos(@r +0) |A|sin(@r +0)
Al 4]

|A|cos®

|A|sin®

= |n the most general case of a complex exponential function 2(¢) = Ae*’, A and 4
are both complex.
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= Letting A = |A]|e/?and A = o+ jo (Where 6, o, and w are real), and using Euler’s
relation, we can rewrite 2() as: z(t) = |Ale”'cos(wt + ) + j|Ale”'sin(wt + 0)

Re{z(t)} Im{z(t)}

* Three distinct modes depending on the value of o
* If 0=0, Re{z} and Im{a} are real sinusoids.

 If o> 0, Re{z} and Im{xz} are each the product of a real sinusoid and a
growing real exponential.

 If 0 <0, Re{z} and Im{xz} are each the product of a real sinusoid and a
decaying real exponential.

* From Euler’s relation, a complex sinusoid can be expressed as the sum of two
real sinusoids as.:
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o>0 o=0 o< 0

= Moreover, a real sinusoid can be expressed as the sum of two complex
sinusoids using the identities:

Acos(wt + 0) = 2[/ @ + /D] and  Asin(ot + ) = 4! — D]
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Impulse decomposition for continuous-time signals

x(t) = | °‘; 2(7)S(t — 7)dr

z(t) = i a:(nA)H(t —AnAj

n=—ao

z(t), (1)

A 0 A 2 3A 4A 5A 6A
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Energy and power definitions

o 2
= The energy of a continuous time signal (¢) is given by: £ = j |a:(t)| dt
= The average power of a continuous time signal a(¢) is given by:
. . _ 1 ¢7,/2 2
periodic complex signal: P, = ?OJ—TO/2|x(t)| dt

ST . _ .1 T2 2
non-periodic complex signal: P, = Th_If}o? _T/2|a:(t)| dt

= Energy signals are those that have finite energy and zero power, i.e., £, < oo,
and P, =0.

» Power signals are those that have finite power and infinite energy, i.e.,
E,— o0, and P, < oo.
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= Example 1: Energy of exponential signal

Compute the energy of the exponential signal (where « > 0).

_at .
x@):{Ae ift >0

0 otherwise
2
E = j A2 qt = A—
voJo 200

» Example 2: Power of a sinusoidal signal
1(t) = A sin(2zfyt + 6)

2

V2 A’sin? 2rft + 0)dt = A?

Px N ]%J‘_l/%
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Symmetry properties

Even and odd symmetry

= A real-valued signal is said to have even symmetry if it has the property:
»(—t) = 2(t) for all values of t.

= A real-valued signal is said to have odd symmetry if it has the property:
(—t) = —x(¢) for all values of t.

Decomposition into even and odd components

= Every real-valued signal 2(t) has a unique representation of the form: a(¢) =
z(t) + z,(t); where the signals z, and z, are even and odd, respectively.

= |n particular, the signals z, and z, are given by:
1,(t) = Ya[a(t) + o(~t)] and z,(f) = Ya[a(t) — a(~1)]

Signal Representation and Modeling https://manara.edu.sy/ 2024-2025 49/81


https://manara.edu.sy/

V)

6)liaJl

Symmetry properties for complex signals

= A complex-valued signal is said to have conjugate symmetric if it has the
property: a(—t) = «*(¢) for all values of t.

= A complex-valued signal is said to have conjugate antisymmetric if it has the
property: a(—t) = —2*(¢t) for all values of ¢.
Decomposition of complex signals

= Every complex-valued signal a(¢) has a unique representation of the form:
(1) = z(t) + x(t); where the signals z, and z, are conjugate symmetric and
conjugate antisymmetric, respectively.

= |n particular, the signals z; and z, are given by:
z(t) = Z2[2(?) + z*(—t)] and z(1) = Y2[2(1) — 2%(-1)]
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= Example 3: Even and odd componehfé of a rectangular pulse
Determine the even and the odd components of the rectangular pulse signal.

1 if0<t<l1 z(t)
1y —
[t =3) {0 otherwise I
i
1
N § (t-1)—TI(-t-1
r (= P2 0D ) ) D)
Te(t) 7o(t)
0.5
05
f 1
| 1 | 1 '
05
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= Example 4: Even and odd components of a sinusoidal signal

Determine the even and the odd components of the sinusoidal signal
2(t) = 5 cos(10¢ + 3).

z.(t) = 2cos(10¢ + 7/3) +2cos( — 10t + 7/3)
e 2 2
>cos(10¢)

z,(t) = 2cos(10t + 7/3) —2cos(—10t + 7/3)
= —%sin(lOt)

51

t (sec)

t (sec)
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= Example 5: Symmetry of a complex éi(ponential signal
Consider the complex exponential signal x(t) = Ae®t, A: real

o(—t) = Ae79t) = (Aer®)* = £*(t) = the signal a(t) is conjugate symmetric.

Right and Left-Sided Signals

= A signal z is said to be right sided if, for some (finite) real constant ¢,, the
following condition holds: x(t) = 0 for all ¢ < #, (i.e., zis only potentially nonzero
to the right of ). x(1)

I
fo

= Asignal zis said to be causal if 2(¢) = 0 for all ¢t < 0.
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»= A causal signal is a special case of a right-sided signal.
= A causal signal is not to be confused with a causal system.

= A signal z is said to be left sided if, for some (finite) real constant ¢, the
following condition holds: x(t) = 0 for all ¢ > %, (i.e., zis only potentially nonzero
to the left of ¢,). x(1)

t

= A signal zis said to be anticausal if 2(t) = 0 for all ¢ > 0.
= An anticausal signal is a special case of a left-sided signal.
= An anticausal signal is not to be confused with a anticausal system.
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Finite-Duration and Two-Sided Signalé

= A signal that is both left sided and right sided is
said to be finite duration (or finite support). Z

= A signal that is neither left sided nor right sided is

said to be two sided. ﬂ/\\/__

Bounded Signals "

= A signal z is said to be bounded if there exists some (finite) positive real
constant A such that |z(¢)| < A for all ¢ (i.e., x(?) is finite for all 7).

= For ex., sine and cosine signals are bounded, since [sint| <1 and |cost] < 1 Vt.

* In contrast, the tangent signal and any nonconstant polynomial function p
(e.g., p(t) = t?) are unbounded, since lim |tant| —ow and lim |p(t)| = o0

t—o>m/2 t—>©
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4. Discrete-Time Signals

= DT signals are not defined at all time instants. they are defined only at time
Instants that are integer multiples of a fixed time increment T, thatis, at t=nT.

= Consequently, the mathematical model for a DT signal is a function z{n] in
which independent variable n is an integer, and is referred to as sample index.

x[n]

= Sometimes DT signals are also modeled using
mathematical functions: a2{n] = 3sin[0.2n7].

= In a DT signal the time variable is discrete, _mm[[ﬂ .
yet the amplitude is continuous. ’

= If, In a DT signal, we limit the amplitude values to a discrete set, the resulting
signal is called a digital signal (two possible values is called binary signal).
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Signal operations

= Amplitude shifting maps the input signal 2{n] to the output signal ¢ as given by
g[n] = on] + A, where A is a real number.

z[n]

;3'.”... -

anTTﬂ H h 1t RSadihanniad i S
JINg

Lmin F——————————

gln] = z[n] + A gln] = z[n] + A

.. il e N—
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» Amplitude scaling maps the input signal z to the output signal ¢ as given by
g[n] = Ban], where B is a real number.

= Geometrically, the output signal g is expanded/compressed in amplitude.

B Xm

il

x[n]

Tmax |-

TTTTTTTTTI

Jrg IEIII'.III

I

.NNN““IT Ita. Lottt
it

g[n] = B z[n]

Signal Representation and Modeling

https://manara.edu.sy/

2024-2025

58/81


https://manara.edu.sy/

>y

ojligJi

» Addition and Multiplication of two signals

Addition of two signals is accomplished by adding the amplitudes of the two
signals at each time instant. g[n] = x4[n] + x,[n].

ry[n] T[]

mﬂ'\HHmem O A1 O 1 1mnUl

g[n] = z1[n] + x2[n]

l i o m
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Multiplication of two signals is accomplished by multiplying the amplitudes of
the two signals at each time instant. g[n] = z([n] z,[n].

x1[n] T9[n]

mm'\HHHImmI, USRS 1 l"nn1 I nmlu

g[n] = xy[n] za[n]
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= Time shifting (also called translatiohﬂ) maps the input signal z to the output
signal g as given by: ¢[n] = 2[n — k]; where £ is an integer.

» Such a transformation shifts the signal (to
the left or right) along the time axis.

= If £ > 0, ¢ is shifted to the right by [,
relative to z (i.e., delayed in time).

» If £ < 0, g is shifted to the left by |k,
relative to z (i.e., advanced in time).

x[n]

| /
'r'rmrTTH [ hTTTTTT. R tatotanti )
n, RYiC
gln] = z[n — k|

/

,,mmHHW]ﬁmmx
Ay

k=10

J._||-1'T'|"|''I"l"I"F'I'TTT n

m+k

gln] = z[n — k|

/

WTTTHHHH“ﬁmm. sty

S

It
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* Time scaling maps the input signal x to the output signal ¢ as given by:
gln] = kn]; downsampling ol
and LerTTTrs
gln] = a{n/k]; upsampling ool H H, H IT‘ITI et

where £ is a strictly positive integer.

gln] = x[2n]

Hﬂ” i RS
t-+-+-1"] ‘[ “ N TT'T"T"w 9 10 11 12_g-gs
5 —4 -8 —9 —1 1 2 8 4 8 8 T 8N ]. &7 13 u

f‘f'—f i ‘H\\
1_

4 4 . £ a 4 5 S -7 B
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z[n] ‘
! 1 l I ] N l ‘ { ‘ { I
—'h —5 —] —3 —'J -1 89 1 2 3 4 5 & T B
\ \. | .‘! " 4
'\\ W 1I". : o & _,"f #
% \ i | / / L
gt % | | / . - -
b \‘ \ | i." ’:’/ s .
n| =z[2n] -~ b : I o ,»’J
gln] = z[2n] 5 ' ‘ a2 %
v 1] L
e 1] ]
=3 =2-=—1 @& 1 F & 4 8B
z[n] o ik BB
111 ]
-3 2 -1 0 1 2 3 4 8§
/,.r ’,f ! \','. \\ L B e
{ Ml -
/ff r" ’f ‘L'l. \\k \\\ - P
ra S
' # | bt ~ ~
/ ¢ / 'Y

gln] = z[n/2]

Tt evVen ! ¥ i’

|

& 5 b

0

\
\
\
2

=] .

T

n

T
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= Time reversal (also known as reflection) maps the input signal z to the output
signal g as given by ¢[n] = a[—n].

= Geometrically, the output signal ¢ is a reflection of the input signal = about the
(vertical) line n = 0.

x[n]

/
TTTTTTTTHHHHHUHTTTTT.‘l 3 dARALGakan SIS
g

Tiq

x[—n]

N\
TTTT'I"I"I'TTTT'I'v_*LlMl;TTTTmm[HHHHTTTTHTT

— T

!
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9. Basic building blocks for discrete-time signals
Unit-impulse Signal

= The unit-impulse signal, denoted o, is defined by:

1, ifn=0 _Ja, 1itn=mn,
5[”]‘{0, ifn 0 “5[”‘”1]‘{0, ifn #n,

5[n] 5n — ni]

0 0 11

= Sampling property of the unit-impulse signal:

qnldn — ng] = afnq]dn — nq = {g[nl], n=mn,

: n#mn,

o1 | ‘ (
T T
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WA, L T

o0

Z z[n]o[n —n,] = z[n,]

n=—00

z[n] x[ny]

e

z[n] d[n — n4|

\ x[n]
d[n — nq] ®—» —..I.-_- n
/!

T

T
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Unit-Step Signal
* The unit-step signal, denoted u, is defined as: uln]

n] = 1, fn=>0
“URI=0, otherwise

S

(S

= Relationship between the unit-step signal and the unit-impulse signal:

dn] = u[n] — u[n - 1]
n 5[] 5]

= Conversely, u[n] = ) J[k]

1 1
k=—o0 ‘
o0 n n

or, u[n] = Z 5[77, — ]{] T f!m v —00 4= 0 .

-
ufng] =0

Summation
interval

k=0 Summation
interval
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Unit-Ramp Signal r[n]
= The unit-ramp signal, denoted r, is defined as: Lol
In, ifn=0 or, equivalently: . t]
rinl = 0, otherwise Mn] = nu[n] I o1 "

gln| =mn

,TTTIII“{ n

rln] = nuln|

WM n

e

\@?/
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= Constructing a unit-ramp from a unit-step {n] = Z u[k]
u[n]

Summation i Summation i

. ringl =0 . nel = n
interval 7o) interval r[no] = g

Sinusoidal Signal
= A discrete-time sinusoidal signal is a signal of the form: afn]= Acos(Qyn+ 6)

where A is the amplitude of the signal, Q, is the angular frequency (rad), and
6 is the initial phase angle (rad). QQ, = 2xF, where F, is the normalized
frequency (a dimensionless quantity).
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[

I ,ﬂﬂmm

I HHH"]II:.

. Wi

| . mh.

il

,ﬂﬂ\m‘ﬂm

i

I .ullllmu

1
30

W

n] = 3cos(0.1n + 7/10)

1
60

L/

W

]

W

2n] = 3cos(0.2n + 7/10)

A fundamental difference between a DT sinusoidal signal and its CT:
= For continuous-time sinusoidal signal z(t) =

* For discrete-time sinusoidal signal a{n]

Acos(aw,t + 0): @, Is in rad/s.

= Acos(Q,n + 6): O, is in rad.

= Let us evaluate the amplitude of z () at time instants that are integer multiples
of T, and construct a discrete-time signal:

dn] =1,(nT) =

Acos(wyT',n + 6) = Acos(27xf, T.n + 6)
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= Since the signal z(?) is evaluated at intervals of T, the number of samples

taken per unit time is 1/T,. z{n] = Acos (27 [f,/f,]n + 6) = AcoszFyn + )

*» The act of constructing a discrete-time signal by evaluating a continuous-time
signal at uniform intervals is called sampling.

= The parameters f, and
sampling interval respectively.

T. are referred to as the sampling rate and the
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Impulse decomposition for discrete-time signals

= Consider an arbitrary discrete-time signal z[n]. Let us define a new signal z,[n]

by: )
B B x[k], n=k
r.[n] = z[k]o[n — k] = <k0, L
= The signal 2{n] can be reconstructed by: z[n] = Z T.[n] = Z z[k]o[n — k]
k=—o0 k=—o0

Periodic discrete-time signals
» A discrete-time signal is said to be periodic if it satisfies: 2fn] = an + N]

for all values of the integer index n and for a specific value of N # 0. The
parameter N is referred to as the period of the signal.
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» The period of a periodic signal is not"'unique. That is, a signal that is periodic
with period N is also periodic with period kN, for every (strictly) positive integer
k, 2[n] = afn + kMN].

» The smallest period with which a signal is periodic is called the fundamental
period.

» The normalized fundamental frequency of a discrete-time periodic signal is
Fy=1/N.
Periodicity of discrete-time sinusoidal signals
Acos(2nFgn + 6) = Acos(2xFy[n + N] + 6)
= Acos(27zFyn + 27FyN + 6)
2nl G N =27k = N =k/F, N must be an integer value
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» Example 6: Periodicity of a discrete-time sinusoidal signal

Check the periodicity of the following discrete-time signals:
a. a[n] = cos(0.2n) b. 2[n] = cos(0.27zn + #/5)
C. 2{n] = cos(0.37zn — 7/10)

a. 2{n] = cos(0.2n)

Since no value of k£ would produce an integer value for N, the signal is
not periodic.

b. 2[n] = cos(0.27zn + #/5)

Qy=027= Fy=Qy/27=02227=0.1> N=Fk/F,=10k
For k=1 we have N =10 samples as the fundamental period.
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C. 2{n] = cos(0.37zn — 7/10)

Qy=037= Fy=Qy/27=03427=0.15=> N =k/F,=k/0.15
For k=3 we have N =20 samples as the fundamental period.

] ” afn] =1c1205(0-27mﬁ '7,/5)_ Taz[n] CTS(O 3mi, 7;/10] ] T
. f El\r £ 1, Al Al i /
1 i A A ‘wg B i

-- ——y —

N =10 : N=20

| | | | | | | ¥« | | | | |
0 5 10 15 20 25 30 0 5 l[] 15 20 25 30
Index n Index n

= Example 7: Periodicity of a multi-tone discrete-time sinusoidal signal

Comment on the periodicity of the two-tone discrete-time signal:
2 n] = 2c0s(0.477n) + 1.5sin(0.48 7n)
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2{n] = a4[n] + z,[7]

z4[n] = 2cos(2,n)
Q,=04r=F,=Q,/27=0.47227=0.2

= N = k/F; =5k,

For k; =1 we have N, =5 samples as the
fundamental period.

z[n] = 1.5c0s(Q2,n)

Q,=0487r= F,=Q,/27=0.487227r=0.24
=> N, =k,/F,=k,/0.24

For k, = 6 we have N, =25 samples as the
fundamental period.

=> N=25

rq|n| + xa(n|

r|n|

l q_‘____ | 7[n] = '2003(0'.47m)§ | ' _

—7 L r H Fy P
=} = -

4l 1 1 1 1 1 1
0 5 10 15 20 25 30

P O S O o LSO N 1 A L
AT S VN VR Y

1

BNy =125

1y[n] = 1.5sin(0.48 z1i)

Signal Representation and Modeling

https://manara.edu.sy/

2024-2025

76/81


https://manara.edu.sy/

m "
bt
Energy and power definitions

= The energy of a discrete time signal z[n] is given by E_ = Z |£L'[n]|2

*» The average power of a discrete time signal 2[n] is given by:

. . 1 &=
periodic complex signal P, = ~ > |:][;[77,]|2
n=0

non-periodic complex signal P. = lim x[n]
» Energy signals are those that have finite energy and zero power, i.e., £ < oo,
and P, =0.

» Power signals are those that have finite power and infinite energy, i.e.,
E,— o0, and P, < oo.
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» Example 8: Energy and power signals

Determine whether the sequence afn] = a™u[n] iIs an energy signal or a power
signal or neither for the following cases: (a ) la| <1, (b) |a| =1, () |a] > 1.

— S 2 _ - 2n u 1 M o
— n;w |x[n]| = nZ:;) ‘a , P = &12100 ST ; | | &12100 TV Z;}‘a
(a) Ea::i‘a?n _ 1 2<oo’
n=0 — |CL|
. | L 1- |a|2(M+1)
i hinoonuz‘ P -

M—w 2M +1 1_|a|2

The signal 2[n] = a™u[n] is an energy signal for |a| < 1.
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(b) E = Z‘a% —> o
n=0
P = lim ZV”-hm Lhd l
Moo 2M + 1 M50 2M +1 2

The signal afn] = a™u[n] is an power signal for |a| = 1.

(c) E = i‘a%’ —> 0
n=0

1 |CL|2(M+1) 1
P = lim Z‘ " = lim 5 —> 0
M- 2M +1 M- QM +1 |a| —1
The signal z[n] = a™u[n] is neither an energy signal nor a power signal for
la| > 1.
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Symmetry properties

Even and odd symmetry

= A real-valued signal is said to have even symmetry if it has the property:
o{—n] = o{n] for all values of n.

= A real-valued signal is said to have odd symmetry if it has the property:
{—n] = —an] for all values of n.

Decomposition into even and odd components

= Every real-valued signal a[n] has a unique representation of the form: afn] =
z [n] + z [n]; where the signals z, and z, are even and odd, respectively.

= |n particular, the signals z, and z, are given by:
z[n] = Ya(aln] + af-n]) and =,[n] = Y(aln] — of-n])
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Symmetry properties for complex signai§

= A complex-valued signal is said to have conjugate symmetric if it has the
property: af[—n] = 2*[n] for all values of n.

= A complex-valued signal is said to have conjugate antisymmetric if it has the
property: af[—n] = —x*[n] for all values of n.
Decomposition of complex signals

» Every complex-valued signal z[{n] has a unique representation of the form:
z[n] = z[n] + x,[n]; where the signals z, and z, are conjugate symmetric and
conjugate antisymmetric, respectively.

= |n particular, the signals z; and z, are given by:
zgln] = 2(aln] + z*[-n]) and z[n] = ¥a(a[n] — z*[-n])
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