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Introduction
= A system is any physical entity that takes in a set of one or more physical
signals and, in response, produces a new set of one or more physical signals.

* One representation of a general system is by a block diagram.

-

(xy () —p —p Vi (1)
input | X () — eT » 2 () | output
signals | Custein : signals CT
' : O —P V(1)
Xy () — —> 1, (1) | system

Multiple-input, multiple-output (MIMO) CT system Single-input, single-output C'T system

= |f we focus our attention on single-input/single-output systems, the interplay
between the system and its input and output signals can be graphically

Illustrated as:
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—— 1/ (1)

_ﬂwﬂwﬁv*r r (t) —{ System

* The input signal is 2(t), and the output signal is y(¢{). The system may be
denoted by the equation y(t) = T{z(t)} = Sys{x(?)}, where T{.} = Sys{.} indicates
a transformation that defines the system in the time domain.

= A very simple example is a system that simply multiplies its input signal by a
constant gain factor K to yield an output signal (t) = K (1),

= Or one that delays its input signal by a constant time delay 7 y(t) = (¢t — 1),

= Or one that produces an output signal proportional to the square of the input

signal y(t) = K[2(t)]°.
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1. Linearity and Time Invariance

Linearity in continuous-time systems

= A system T is linear, if for all functions z; and z, and all constants «, and o,
the following condition holds:

HKagwy(t) + apao(t)} = oy T{z4(1)} + o T{zy(1)}-

k1
ri(t) > l z1(t) —={Sys{.} > l

@—-53'5{-} — y(f) = + y(t)
ko T kg
Ta(t) > Sys{.) S

z3(t) —=

= A direct consequence of the linearity property is that, for linear systems, an
input which is zero for all time results in an output which is zero for all time.

0= T{0z(?) + Oz (2)} = O T {x(2)} + 0 T{x,(?)} = O (zero-in/zero-out property)

Analyzing Continuous Time Systems in the Time Domain https://manara.edu.sy/ 2024-2025 5/43


https://manara.edu.sy/

6)liaJl

= Note: Linear systems are much easier to design and analyze than nonlinear
systems.

» Example 1: Testing linearity of continuous-time systems
a. y(t) = 5x(1) Vv b. () =51(t) +3 X
c. y() = 3[=(D)]? X d. y(?) = cos(a(t)) X

*» The property defining a linear system can be separated into two statements as
follows:

o If T{ax(t)} = aT{z(t)} for all signals z(t) and any constant «, then the system
IS homogeneous.

o If T{x(?) + y(?)} = T{x(?)} + T{y(?t)} for all signals z(t) and y(?), then the system
Is additive.
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Time Invariance in continuous-time systems

= A system T is said to be time invariant (TI) if, for every function x and every
real constant 7, we have: T{x(?)} = y(t) = T{z(t — )} = y(t — 7).

z(t) y(t)

%ﬂ\y&vﬁ t r(t) —=| System —— y(t) U{\Uﬂuﬂur {
4’%%&?& i z(f—T) —= Sj.,-':-;l[am A .i.l'['f - T] T/\Uf\uﬁuﬂu; ;

= Example 2: Testing time invariance of continuous-time systems
a. y(d) =5x(t) b. y(¢) = 3cos(z(1)) V c. y(t) = 3cos(t)z(t) X
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2. Differential Equations for Continuous-Time Systems
= One method of representing the relationship established by a system between
its input and output signals is a differential equation (DE).

= model for an ideal resistor is:  vp(¥) = Riy(?)

. . . di, (t
= model for an ideal inductoris: v,(?) = L ZcleE )
. .. A dv(1
= model for an ideal capacitor is: i, (t) = C vgt( )
wir(t) R ir () L ict) C
+ v (1) -+ 0 - 4 ve (1) -
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= Example 3: Differential equation forﬂfsul_:njple RC circuit i
oo(t) = Ri(t),  i(t) = C% ; —’VV\/ ;
RO+ y(1) = 0 ool
WD | ylt) = () =

= Example 4 DE for RLC circuit' : . - .
(=140 =0 dyd(tt), ) _ ¢ 1) e |
—z(t) + Ri(t) + v, (t) + y(t) = z (t) L —C vt

—#(t)+ RC diﬁ” LC d;yt(t) Fyt) =0 T _
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20t) R d (t) oLal
d’y y _
= Example 5: Another RC circuit R,

—2(t) + Riy(t) + Ryliy(t) — i5(H)] = 0 % A .
Ry[,(1) = 4,(D] + y(t) = 0 o) PSP EN

dy(t dy(t i
o) =0 = i) = 0 U+ -y -

() + RC dy(t) B TR 20

g
W0 By ;chzz D) =

el
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3. Constant-Coefficient Ordinary Differential Equations
» |n general, CTLTI systems can be modeled with ordinary differential equations
that have constant coefficients.

& dy(t) <&, drat
Zak yg ) Zbk g; )
k=0 dt i dt

* |n general, a constant-coefficient ODE has a family of solutions. In order to
find a unique solution for y(?), initial values of the output signal and its first V-1
derivatives (initial conditions ICs) need to be specified at a time instant ¢ = .

N-1
oty LD ddt]j/_(f) to find the solution for ¢ >

t=ty t=t,

= [nitial conditions (ICs) also represent the memory of continuous-time systems.
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» The ICs in a DE of an LTI system are directly related to the initial values of the
energy storage devices in the system, such as initial voltages on capacitors
and initial currents through inductors.

= A system with zero ICs is said to be at rest (initially relaxed).

Solving Linear Differential Equations

dy(t)

* The differential equation: pr ay(t) =r(t), y(t,): specified is solved as:

t
y(t) = e_“(t_to)y(to) + J; e_“(t_f)r(f)dr

» Example 6: Unit-step response of the simple RC circuit (y(0) = 0)

d?é(tt) + RlC y(t) = %u(t) = d'zgf) + 4y(¢) = 4u(?)
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R=10Q |
N -—/\/\/\/ g s N r(t) = u(t)
z (t) —_ C=1/4F y(t) 1
N > & N t
B —t/RC "
y(t) = J‘ —~(t-7)/RC Rl(] w(r)dr = eR(J J‘O P0G =1 — RO 4>
a . !
y(t) = (L — e () oy i :
y(1) = (L — e yu(t) = i |

t (sec)
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= Example 7: Pulse response of the siMbIe RC circuit

dy(t) 4y(t) = 4ATT (t/ ) = y(t) = J‘t e AT (v/w)da I

r(t) = AIll(t /)

dt —w/2
Case 1. t<—awl2, y(t)=0

Case 2: ~wi2 <t < w2, y(t) =4[ ™ dr = Al -]

Case 3: t> awl2, y(t) = 4AI_CZZ e 04 = AeM[e* — 7]

- Nl
O’ t < _% 0.8}
0.6
y(t) = < A[]. — 6_2w6_4t], —% <t< % < o4l
0.2}

—Atr 2w —2w
\Ae [6 & ]’ t> % —c]_{::_

1 1 1
1 —0.5 0 0.5 1 1.5
t (sec)

Analyzing Continuous Time Systems in the Time Domain https://manara.edu.sy/ 2024-2025 14/43


https://manara.edu.sy/

V)

deola
ool
Solution of the general differential equation
» The complete solution of a linear constant coefficient differential equation can
be decomposed into:
1. The point of view of Mathematics:

Homogenous solution y,(?) + Particular solution y,(7).

2. The point of view of Engineer:
Natural response y,(t) + Forced response y ().

3. The point of view of control engineer:
Zero-input response 1y, (t) + Zero-state response y_ (7).
Transient response y,(t) + Steady state response y._(1).
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Zero-input response and Zero-states response
*» The zero-input response is the system output when the input z(¢) = 0. It is the

result of internal system conditions (energy storages, initial conditions).

* |n contrast, the zero-state response Is the system output to the external input
2(t) when the system is in zero state (all initial conditions are zero).

= Zero-state response is linear with respect to the input. While zero-input
response is linear with respect to the initial conditions.

Input LTI y.(1) y (%)
() system
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Zero-input response y, (1)
= The zero-input response y.(t) is the output of the system when the external

input a(?) is zero. It is produced by the system because of the initial conditions.

. P T €
Zero-input response y (1) satisfies: Zak d:’“ =0.
k=0

Determine the characteristic equation z:[:oaka’“ = (0 of the system by replacing

the £-th derivative of the output signal y_(¢) with o*.

d"y_,(t)
dt* 4

- - i N
Let the roots of the characteristic polynomial Zkzoakak be a4, a,, ..., )

k
a
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= Ifall o are of order 1,y,(1) = > ¢ ™, c.; determined by the ICs ﬁ(ﬁ)

Practical Initial Conditions and the Meaning of 0~ and 0*

» |n practical problems, we must derive ICs from the physical situation. For
example, in an RLC circuit, we may be given the conditions (initial capacitor
voltages, initial inductor currents, etc.).

* |n practice, the input is assumed to start at ¢t = 0. The conditions immediately
before t = 0 are the conditions at t = 0~ (Pre-initial conditions), and those
immediately after ¢t = 0 are the conditions at ¢t = 0" (Post-initial conditions).

* |n practice, we are likely to know the ICs at ¢t = 0~ rather than at ¢t = 0*. The two
sets of conditions are different, although in some cases they may be identical.
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» The total response y(t) consists of two components: the zero-input response
y.(t) and the zero-state response vy, ().

= At ¢{= 0", the total response y(¢) consists solely of y_(¢) because the input has
not started yet. Hence the initiaI conditions on y(t¢) are identical to those of

= Moreover, y.(t) does not depend on the input 2(t). Hence, application of x(¢) at
t=0 does not affect y_ (t). Thus,

yzz)(o )_yzz)(o )_ (])(O ) j:O, ]., S n—1

= Note: For y,(?), there is no distinction between ICs at ¢t = 0-, 0, and 0*. It is not
the case for the total response, in general,

yP07) = yP0%, j=0,1,..,n-1
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= Example 8: Zero-input response of RLC circuit
A voltage 2(t) = 10e3%u(t) is applied at the input of the RLC circuit. Find the
zero-input response for ¢ > 0 if the initial inductor current is ,(0) = 0, and the
initial capacitor voltage v(0)=5V.Use R=3Q, L=1Hand C=1/2F.

v (1) + vp(t) + vy (1) = (1) % i S
dy(t) ¢ . i 5 vr, (t) il
o 3y(t) + 2 | y(z)dr = a(t) 16 0 ) =¥
d*y(t) | ., dy(t)  da(t) -
P + B—d ; + 2y(t) = g

y(o_) — yzz(o_) — yzz(0+) — O

WD 3yt) + e (8) = at) = DI 43907 + 0,07 = 2(07) = L) = 5
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dt dt dt

-+ 37 +2y, (1) =0=y_.() =c e gt Ciof 2

t

dt
yzz(0+) — O, dyz&(to ) - 5= C,i = —C,o = -5 = yzz(t) — _5€_t + 56_2t, +>0
Let us compare y(07), dy/d#(0") with 3(0*), dy/d#(0*) for the total response.
dyc(i(t)_) +3y(07) +v,(0) =0 The loop current y(0*) = y(0-) = 0 because it
dy(0%) cannot change instantaneously in the absence
Yy

+3y(0™) + v,(0") =10 of impulsive voltage. The same is true of the
dt .
. . capacitor voltage. Hence, v(0*) = v(0") = 5.
dy(0) _ o dy(0") _
— e D # ek D
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Zero-state response y._ (1) |

= The zero-state response vy, (?) IS the output of the system to the external input
signal z(?). The initial conditions of the system are assumed to be zero.

- Ifall o are of order 1, 9.,(1) = > c..e™ +y,(2)

k
c....could be determined by the initial conditions d—yljs(0+)
y? (01 = (07 +y2)(07), j=0,1, ..., n -1

» Example 9: Zero-state response of RLC circuit

Find the zero-state response for ¢ > 0 for the circuit in example 8
2
4’y (1), dy. (1)
dt’ dt
A particular solution: y,(t) = ke™ = k = 15

+2y_(t) = 10e™
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yZS(t) ~ Czsle_t + Cz52€_2t — 156_3t, tZO

dy(0") _ dy,(0")  dy,(0) _ dy,0) . . _
T T T T G

yzs(0+) =0, dyz;igfo : =10=c,y =-9,¢, =20

y..(t) = —5e”’ + 20e % =15, t20
The complete solution = Zero-input response + Zero-state response
y(t) =y,.(1) +y, () = ;563_'5 + 56_2f + ;5e_t +20e 4 — 156_3f

., Vo
zero—input response zero—state response

y(t) = —10e™" + 25" — 15¢~*
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Linearity properties of zero-input and zero-state response
= Zero-state response is linear with respect to the input.

= Zero-input response is linear with respect to the initial state.

A?) Y1) .
» LTlsystem [—* _ N ot o
R Wy L, y(t) = Zkzl Cal™ + Zk=1 C.€ ™ +1,(1)
{y"(07)} Y.{1) zero—input response  zero—state response
= Notes:

1. For LTI systems, the excitation and initial states can be thought of as two

separate inputs.
2. When the ICs are not zero, there is no linear relationship between the
complete response of the system and the external excitation.

https://manara.edu.sy/ 2024-2025
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Homogeneous solution (natural response) & particular solution (forced response)
. X dRy
Homogeneous solution y,(t), also called Natural response Sa’[ISerSZ a, i =0
k=0

. — N
Determine the characteristic values Y = a,a" =0 as oy, @, .., ay

N a
a. If all o, are of order 1, yu(1) = D ce™
b. If a root ¢, is repeated k times (order k), y,(t) = ZZ ot thie 4 Z] L Ce

= Note: the coefficients c, or c; should be determined by the initial conditions at
t = 0* simultaneously with those in the particular solution.

= The particular solution y,(t) represents any solution of the DE for the given
input. It is also called Forced response y,1).
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= A particular solution is usually obtained by assuming an output of the same
general form as the input.

Input signal Particular solution
t" kt"+k t"!+ .. kt+ k, (Constantinput is a special case with n = 0)

ke® | ais not the characteristic value (c.v.)
et kite?t + kye®, ais the characteristic value with order 1
k the® + k,_t" e + . kte® + kye¥, ais the c.v. with order k

cos(wt) or sin(wt) kicos(wt) + k,sin(wt)

The complete solution = homogeneous solution + particular solution
y(1) = y, (1) + 5, () = D ce™ + y, (1)
k —

————  forced
natural
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= 4,(t) depends on the structure and the initial state of the system.

= For a stable system, y,(#) tends to gradually disappear in time. Because of
this, it is referred to as the transient response of the system.

= y,(?) depends on the input signal z() and the internal structure of the system.
= y,(?) Iis the part of the response that remains active after the homogeneous
solution disappears. Itis referred to as the steady-state response of the system.

= Example 10: Output response of RLC circuit
Find the complete solution, y,(¢) and y, (1), for ¢ > Q for the circuit in example 38
dy. (1) . dy., (D) P
dtQ + 37 + 2yzs(t) = 10e
A particular solution: y,(t) = ke™ = k = 15
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The homogeneous solution: ¥,(t) = ce™ +c,e™
y(t) = ce + e —15e™, t2=0

y(0") =0, dyc(l(z ) 5= ¢ =-10,c, =25

y(t) = =10e™ +25e % — 15 [t >0
Yp(t) Yp(1)

o) Zero state V(1)

/ ,-u’”'/ Natural

™., Total ol

Zero input

[ —=
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4. Impulse Response and Convolution

Continuous-time impulse response

* The impulse response h(t) of an CTLTI system is the zero-state output of the
system when a unit impulse &) is applied at the input.

N k‘h k‘
Zak (t) Z k 5(t)
k=0 k=0
with post-initial conditions: /"~ 1>(0 ) =1a,, h(”(O )=0, j=01,...,n—2

» Example 11: Determine the impulse response of the CTLTI system given by:

(a) —+52t +6y(t) = 2(t)  (b) ‘;—+5‘£{ +6 (t)—d— ‘ZZ; + 32(%)
(a) % + ‘Zf + 6h() = S(t); —(0 )y=1 h(0") =0= h(t) = (e — e )u(t)

Analyzing Continuous Time Systems in the Time Domain https://manara.edu.sy/ 2024-2025 29/43


https://manara.edu.sy/

8)liaJl
(b) Suppose h4(t) satisfies: o

C;th“ + 52U dh1 + 6h, (1) = 5(¢)

Due to the differentiation property and linearity of the CTLTI system, the

2
impulse response h(t) satisfies: h(t) = % 49 dhégt)

h(t) = (e —e)u(t) = h(t) = 5(t) + (3e™ — 6" )u(t)

+ 3h,(1)

» Example 12: Determine the impulse response of the circuit in example 8

d’y(t) ., dy(d) da?(t)
S B+ 2(1) =

h(t) = (—e' +2e)u(t)

Analyzing Continuous Time Systems in the Time Domain https://manara.edu.sy/ 2024-2025
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Continuous-time step response |
» The step response s(t) of an CTLTI system is the zero-state output of the
system when a unit step u(t) is applied at the input.
sty ="D " uity = [ s(yde
According to the differential (or integral) properties of the CTLTI system,

h(t) = dz(tt), s(h) = [ h(r)ds

» Example 13: Impulse response of the simple RC circuit
Consider the R(C circuit. Let the element values be R=1Q and C= 1/4 F.
Assume y(0) = 0. Determine the impulse response of the system.

t
First method: using differential equation y(t) = _[0 e TIC L p(7)dr
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Setting z(t) = K1) h(t) = j ORI S(r)dr = e u(t) = de M u(t)

Second method: unit-step response of the system

s(t) = (1 — ROy () = h(t) = ds(ty 1

o = R0 e "COu(t) = de M u(t)

The Convolution Integral

= The (CT) convolution of the functions z and h, denoted z * h, is defined as the

function: 2(8) * h(t) = _E:Ox(f)h(t _7)dr

Properties of Convolution
» |s commutative. For any two functions xand h, x * h=h * x.
= |s associative. For any functions z, i, and h,, (z * hy) * hy =z * (hy * hy).
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= |s distributive with respect to addition. For any functions =z, h,, and h,,
T % (hy + hy)=x* h +x* hy.
» For any function z, x(t) * o(t) = j_oo 2(7)o(t — 7)dt = 2(1)
Moreover, ¢'is the convolutional identity. That is, for any function z, z * 6= x.

= According to the linear time-invariant property of CTLTI system, the zero-state
response output can be obtained as follows:

 When the input signal is &(t), the zero-state response is h(t): ot) — h(?)
« According to time-invariant property: &t — 7) — h(t — 7)
« According to homogeneous property: x( 7)ot — 1) — () h(t — 7)

* According to additive property: z(t) = J'OO r(7)o(t — 7)dr —> f r(T)h(t — 7)dr
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= For any LTI system with input z, zero-state response y,, and impulse

response h, the following relationship holds: y,_,, = = * h.

» Example 14: Computing the Zero-State Response
CTLTI system with A(t) = e?'u(t), determine the response y_(1) for a(t) = e 'u(t).

Yy (1) = E:O r(7)h(t — 7)dr = J.; el = e_th; e'dr = (e —e)u(t)

x(r) hr) ()
1 1 I

= —2t |
e e o e !
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Interconnected Systems
= Two CTLTI systems with impulse responses #/,(¢) and h,(t) are connected in

cascade as shown in the figure below: £, (1) = hy(t) * hy(1)

z(t) —— hi(t) f——| ho(t) —— y(t) = z(t) ——| hey(t) — y(t)
heg(£) = Iy (2) * hy(2)

= Two CTLTI systems with impulse responses #/,(¢) and h,(t) are connected in
parallel as shown in the figure below: %, () = hy(f) + hy(?)

= hy(t) —
£(t) —— O+ vt) = @) —] helt) —> )
- B hey() = y(£) + ho()
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Eigenfunctions of CTLTI system eigenvalue

= |f the output signal is a scalar multiple of the input l
signal, we refer to the signal as an eigenfunction *{) —{ system > Az(?)
and the multiplier as the eigenvalue. \

_ _ _ eigenfunction
» Complex exponential are eigenfunctions of LTI systems.

LTI

St —> — H(s)es!

h(t)

y(t) = (h*2)(t) = [ Wx)eVdr =" h(z)edr = H(s)e" where s € C

Note: We are talking of an exponential, which starts at ¢t = —co.
= We refer to H as the transfer function of the system.
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5. Causality and Stability in Continuous-Time Systems

Causality in continuous-time systems

= A system Tis said to be causal if, for every real constant ¢,, T{(t,)} does not
depend on 2(t) for some ¢ > .

= A causal system is such that the value of its output at any given point in time
can depend on the value of its input at only the same or earlier points in time.

» For CTLTI systems the causality property can be related to the impulse
response of the system A(t) =0 for all £ < 0.

(1) = h(t) * (1) = j“; h(7)x(t — 7)dr = j0°° W)zt — 7)dr

= Note: If the independent variable t represents time, a system must be causal
In order to be physically realizable.
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= Example 15: causal and non causal systems
a. CT time-delay system y(£) = 2(#) + 2(t — 0.01) + 2(¢ — 0.02)  +/
b. CT time-forward system y(¢) = 2(¢) + 2(t + 0.1) X

Stability in continuous-time systems

= A system is said to be stable in the bounded-input bounded-output (BIBO)

sense if any bounded input signal produce a bounded output signal. For
stability of a continuous-time system: 1(i) < B, <o = y(t) < B, < .

» For a CTLTI system to be stable, its impulse response must be absolute
iIntegrable. f (o) dr < o

» Example 16: Stability of a first-order CTLTI system described by the DE:
y(t) + ay(t) = ()
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The step response of the system is when (t) = u(?)

y(0) = 0. (We take the initial value to be zero since the system is specified
to be CTLTI. Non-zero initial conditions cannot be linear: Based on a zero
Input signal must produce a zero output signal).

y(0)=0=>0=c+1/a=>c=-1/a

ds(t)

= s(t) = e “u(t)

S(t) = %(1 — e yu(t) h(t) =

[ ronde = ["ede =~

a
Thus the system is stable if a > 0.
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6. Block Diagram Representation of Continuous-Time Systems

= Block diagrams for CT systems are constructed using three types of
components, namely constant-gain amplifiers, signal adders and integrators.

w (t) r\H - Kw(t) w (t) —— f dt — /: w (t) dt

|

w1 (£) & i) - wy (t) +wa (t)+ ... +wyg ()
wy (t)

u';: ()
* Finding a block diagram from a DE is best explained with an example.
d*y d2y dy d°z dz
2 y Ha ot ay = by — 2 +0, =+ bz

L dt
= We will introduce an intermediate variable w(?)
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d?)—w+a d2—w+a d—w+aw—x:>d3—w—x—a d2—w—a d—w—aw
at* a7 dt”* a dt
: 3w d*w dw
= The output signal y(f) can be . Zaly iy T w (b
expressed in terms of w(t) as: _
d*w dw i G
r\bg
L7 r\b1
(—E [ dt & [ dt w0 o B y ()
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Imposing initial conditions
= |nitial values of y(¢) and its first N — 1 derivatives need to be converted to
corresponding initial values of w(t) and its first V— 1 derivatives.

by
>
d*w du I\bl
d?{.Q Ty "H- t—i i i.f'{f[ﬂ
P by I ] I
13 by
z (t)—(F—s [ dt | - [ dt [ dt —(+)—> (1)
?L:]tn f:fu f:fu
a
<
—a1
<
1
<

= Example 17: Block diagram for continuous-time system

3
d—+5dy+17dy
dt’ dt? dt

2
)
dt?

ay

> dt |, :_4

+13y:x+2% (1) = cos(20t), y(0) = 1
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dw . dw dw dw
e 5ﬁ+17%+13w T, Y= w+2dt
dw dy dw d*w

0)=1=w0)+2— , = =2=—| +2—— |,
v(0) )+ dt |, dt|,_ dt |, dt” t=0

2 2 3 3 2
@y :_4:d_"2“ 2d_ , 29 0 - 5d— —17d—“’ ~ 13w(0)
dt* |,_, dt” |,_ dt’ t’ |,_, dt” dt |,

2(0) = 1. Solving Equations, the initial values of integrator outputs are:

0) = 71 dw| _ 58 ,
w( ) 45 7 dt =0 B 457 16,/45 58/45 T _71/45
Twl - _ 16 " O— Q{1 “L’Q e “J‘ e “j*_i—** 10
at*|_, 49 Jra |
17
) 13

-~
<
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