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Chapter 2

Analyzing Continuous Time Systems in the Time Domain

1. Linearity and Time Invariance

2. Differential Equations for Continuous-Time Systems

3. Constant-Coefficient Ordinary Differential Equations

4. Impulse Response and Convolution

5. Causality and Stability in Continuous-Time Systems

6. Block Diagram Representation of Continuous-Time Systems
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Introduction

▪ A system is any physical entity that takes in a set of one or more physical 

signals and, in response, produces a new set of one or more physical signals.

▪ One representation of a general system is by a block diagram.

Multiple-input, multiple-output (MIMO) CT system Single-input, single-output CT system

▪ If we focus our attention on single-input/single-output systems, the interplay 

between the system and its input and output signals can be graphically 

illustrated as:
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▪ The input signal is x(t), and the output signal is y(t). The system may be 

denoted by the equation y(t) = T{x(t)} = Sys{x(t)}, where T{.} = Sys{.} indicates 

a transformation that defines the system in the time domain.

▪ A very simple example is a system that simply multiplies its input signal by a 

constant gain factor K to yield an output signal y(t) = K x(t),

▪ Or one that delays its input signal by a constant time delay  y(t) = x(t − ),

▪ Or one that produces an output signal proportional to the square of the input 

signal y(t) = K[x(t)]2.
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▪ A system T is linear, if for all functions x1 and x2 and all constants 1 and 2, 

the following condition holds: 

T{1x1(t) + 2x2(t)} = 1T {x1(t)} + 2T{x2(t)}.

1. Linearity and Time Invariance

Linearity in continuous-time systems

▪ A direct consequence of the linearity property is that, for linear systems, an 

input which is zero for all time results in an output which is zero for all time.

0 = T{0x1(t) + 0x2(t)} = 0T {x1(t)} + 0T{x2(t)} = 0 (zero-in/zero-out property)

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Analyzing Continuous Time Systems in the Time Domain 6/432024-2025

▪ Example 1: Testing linearity of continuous-time systems

a. y(t) = 5x(t)  √ b. y(t) = 5x(t) + 3  X

c. y(t) = 3[x(t)]2  X d. y(t) = cos(x(t))  X

▪ Note: Linear systems are much easier to design and analyze than nonlinear 

systems.

▪ The property defining a linear system can be separated into two statements as 

follows:

• If T{x(t)} = T{x(t)} for all signals x(t) and any constant , then the system 

is homogeneous. 

• If T{x(t) + y(t)} = T{x(t)} + T{y(t)} for all signals x(t) and y(t), then the system 

is additive.

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Analyzing Continuous Time Systems in the Time Domain 7/432024-2025

▪ Example 2: Testing time invariance of continuous-time systems

a. y(t) = 5x(t)    √ b. y(t) = 3cos(x(t)) √ c. y(t) = 3cos(t)x(t) X

Time Invariance in continuous-time systems

▪ A system T is said to be time invariant (TI) if, for every function x and every 

real constant , we have:T{x(t)} = y(t) ⇒ T{x(t − )} = y(t − ).
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2. Differential Equations for Continuous-Time Systems 

▪ One method of representing the relationship established by a system between 

its input and output signals is a differential equation (DE).

▪ model for an ideal resistor is: ( ) ( )R Rv t Ri t=

▪ model for an ideal inductor is:
( )

( ) = L
L

di t
v t L

dt

▪ model for an ideal capacitor is:
( )

( ) = C
C

dv t
i t C

dt
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( )
( ) ( ), ( )

( )
( ) ( )

( )
( ) ( )

= =

+ =

+ =

R
dy t

v t Ri t i t C
dt

dy t
RC y t x t

dt
dy t

y t x t
dt RC RC

1 1

▪ Example 3: Differential equation for simple RC circuit

▪ Example 4: DE for RLC circuit
( ) ( ) ( ) ( )

( ) , ( ) ,

( ) ( ) ( ) ( ) 0

( ) ( )
( ) ( ) 0

= = =

− + + + =

− + + + =

L

L

di t dy t di t d y t
v t L i t C C

dt dt dt dt
x t Ri t v t y t

dy t d y t
x t RC LC y t

dt dt

2

2

2

2
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▪ Example 5: Another RC circuit

( ) ( ) [ ( ) ( )] 0

[ ( ) ( )] ( ) 0

( ) ( )
( ) ( ) ( )

( )
( ) ( ) 0

( )
( ) ( )

− + + − =

− + =

=  = +

+
− + − =

+
+ =

x t R i t R i t i t

R i t i t y t

dy t dy t
i t C i t C y t

dt dt R

R Rdy t
x t RC y t

dt R

R Rdy t
y t x t

dt RRC RC

1 1 2 1 2

2 2 1

2 1
2

1 2
1

2

1 2

1 2 1

1

1

( ) ( )
( ) ( )+ + =

d y t R dy t
y t x t

L dt LC LCdt

2

2

1 1
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3. Constant-Coefficient Ordinary Differential Equations

▪ In general, CTLTI systems can be modeled with ordinary differential equations 

that have constant coefficients.

( ) ( )k kN M

k kk k
k k

d y t d x t
a b
dt dt= =

= 
0 0

▪ In general, a constant-coefficient ODE has a family of solutions. In order to 

find a unique solution for y(t), initial values of the output signal and its first N − 1 

derivatives (initial conditions ICs) need to be specified at a time instant t = t0.

( ) ( )
( ), , ,

N

N
t t t t

dy t d y t
y t

dt dt

−

−
= =0 0

1

0 1 to find the solution for t  t0

▪ Initial conditions (ICs) also represent the memory of continuous-time systems.
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▪ The ICs in a DE of an LTI system are directly related to the initial values of the 

energy storage devices in the system, such as initial voltages on capacitors 

and initial currents through inductors.

▪ A system with zero ICs is said to be at rest (initially relaxed).

Solving Linear Differential Equations

( )
( ) ( ), ( ): + =

dy t
y t r t y t

dt 0 specified▪ The differential equation:                                                              is solved as:

( ) ( )( ) ( ) ( )
    − − − −= + 

tt t t

t
y t e y t e r d0

0
0

▪ Example 6: Unit-step response of the simple RC circuit (y(0) = 0)

( ) ( )
( ) ( ) ( ) ( )+ =  + =

dy t dy t
y t u t y t u t

dt RC RC dt
1 1

4 4
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/
( )/ / /( ) ( ) ,   

−
− − −= = = −  

t RCt tt RC RC t RCe
y t e u d e d e t

RC RC0 0

1
1 0

/( ) ( ) ( )

( ) ( ) ( )

−

−

= −

= −

t RC

t

y t e u t

y t e u t4

1

1
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▪ Example 7: Pulse response of the simple RC circuit

( )

/

( )
( ) ( / ) ( ) ( / )4

2
4 4 4

t tdy t
y t A t y t e A d

dt



   − −

−
+ =   = 

Case 1: t  − /2, y(t) = 0

( )

/
( ) [ ]4 2 4

2
4 1

t t ty t A e d A e e 


− − − −

−
= = −Case 2: −/2  t   /2,

Case 3: t  /2,

,

( ) [ ],

[ ],

2
2 4

2 2
4 2 2

2

0

1 t

t

t

y t A e e t

Ae e e t



  

  

− −

− −

  −


= − −  


− 

/ ( )

/
( ) [ ]

2 4 4 2 2

2
4 t ty t A e d Ae e e

   


− − − −

−
= = −

for A = 1 &  = 1
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Solution of the general differential equation

▪ The complete solution of a linear constant coefficient differential equation can 

be decomposed into:

1. The point of view of Mathematics: 

Homogenous solution yh(t) + Particular solution yp(t).

2. The point of view of Engineer: 

Natural response yn(t) + Forced response y(t).

3. The point of view of control engineer: 

Zero-input response yzi(t) + Zero-state response yzs(t).

Transient response yt(t) + Steady state response yss(t).
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▪ The zero-input response is the system output when the input x(t) = 0. It is the 

result of internal system conditions (energy storages, initial conditions).

▪ In contrast, the zero-state response is the system output to the external input 

x(t) when the system is in zero state (all initial conditions are zero).

Zero-input response and Zero-states response

LTI
systemx(t)

Input y (t)yzs(t)


yzi(t)

▪ Zero-state response is linear with respect to the input. While zero-input 

response is linear with respect to the initial conditions.
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Zero-input response yzi(t) 

▪ The zero-input response yzi(t) is the output of the system when the external 

input x(t) is zero. It is produced by the system because of the initial conditions.

N k
kk
a 

= 0

Zero-input response yzi(t) satisfies:                            .
( )kN
zi

k k
k

d y t
a
dt=

=
0

0

Determine the characteristic equation                       of the system by replacing 

the k-th derivative of the output signal yzi(t) with k.

( )k
kzi

k

d y t

dt
→

Let the roots of the characteristic polynomial                  be 1, 2, …, N. 

N k
kk
a 

=
= 0
0
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▪ If all k are of order 1,                              , czik determined by the ICs( )


=
=  k

N t
zi zikk
y t c e

1
(0 )+

k
zi
k

d y

dt

Practical Initial Conditions and the Meaning of 0− and 0+

▪ In practical problems, we must derive ICs from the physical situation. For 

example, in an RLC circuit, we may be given the conditions (initial capacitor 

voltages, initial inductor currents, etc.).

▪ In practice, the input is assumed to start at t = 0. The conditions immediately 

before t = 0 are the conditions at t = 0− (Pre-initial conditions), and those 

immediately after t = 0 are the conditions at t = 0+ (Post-initial conditions).

▪ In practice, we are likely to know the ICs at t = 0− rather than at t = 0+. The two 

sets of conditions are different, although in some cases they may be identical.
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▪ The total response y(t) consists of two components: the zero-input response 

yzi(t) and the zero-state response yzs(t). 

▪ At t = 0− , the total response y(t) consists solely of yzi(t) because the input has 

not started yet. Hence the initial conditions on y(t) are identical to those of 

yzi(t). Thus, .

▪ Moreover, yzi(t) does not depend on the input x(t). Hence, application of x(t) at 

t = 0 does not affect yzi(t). Thus,

▪ Note: For yzi(t), there is no distinction between ICs at t = 0−, 0, and 0+. It is not 

the case for the total response, in general,                                                       .

( ) ( )( ) ( ), , , , − −= = −j j
ziy y j n0 0 0 1 1

( ) ( ) ( )( ) ( ) ( ), , , , j j j
zi ziy y y j n+ − −= = = −0 0 0 0 1 1

( ) ( )( ) ( ), , , , j jy y j n− + = −0 0 0 1 1
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▪ Example 8: Zero-input response of RLC circuit

A voltage x(t) = 10e−3tu(t) is applied at the input of the RLC circuit. Find the 

zero-input response for t  0 if the initial inductor current is iL(0−) = 0, and the 

initial capacitor voltage vC(0−) = 5 V. Use R = 3 Ω, L = 1 H and C = 1/2 F.

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )
( )

 
−

+ + =

+ + =

+ + =



L R C

t

v t v t v t x t

dy t
y t y d x t

dt
d y t dy t dx t

y t
dt dtdt

2

2

3 2

3 2

y(0−) = yzi(0
−) = yzi(0

+) = 0

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

− −
− − −+ + =  + + =  = −C C

dy t dy dy
y t v t x t y v x

dt dt dt
0 0

3 3 0 0 0 5
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( ) ( ) ( )
+ − −

= = = −zi zidy dy dy
dt dt dt
0 0 0

5

( ) ( )
( ) ( ) − −+ + =  = +t tzi zi
zi zi zi zi

d y t dy t
y t y t c e c e

dtdt

2
2

1 22 3 2 0

( )
( ) , ( ) , 0

+
+ − −= = −  = − = −  = − + t tzi

zi zi zi zi
dy

y c c y t e e t
dt

2
1 2

0
0 0 5 5 5 5

Let us compare y(0−), dy/dt(0−) with y(0+), dy/dt(0+) for the total response. 

( )
( ) ( )

( )
( ) ( )

−
− −

+
+ +

+ + =

+ + =

C

C

dy
y v

dt
dy

y v
dt

0
3 0 0 0

0
3 0 0 10

The loop current y(0+) = y(0−) = 0 because it 

cannot change instantaneously in the absence 

of impulsive voltage. The same is true of the 

capacitor voltage. Hence, vC(0+) = vC(0−) = 5.
( ) ( )− +

 = −  =
dy dy
dt dt
0 0

5 5
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▪ If all k are of order 1,                                            ( ) ( )


=
= + k

N t
zs zsk pk
y t c e y t

1

Zero-state response yzs(t) 

(0 )+
k
zs
k

d y

dt
czsk could be determined by the initial conditions

( ) ( ) ( )( ) ( ) ( ), , , , + + += + = −j j j
zi zsy y y j n0 0 0 0 1 1

▪ Example 9: Zero-state response of RLC circuit

Find the zero-state response for t  0 for the circuit in example 8

( ) ( )
( ) −+ + = tzs zs
zs

d y t dy t
y t e

dtdt

2
3

2 3 2 10

▪ The zero-state response yzs(t) is the output of the system to the external input 

signal x(t). The initial conditions of the system are assumed to be zero.

A particular solution: ( ) −=  = −t
py t ke k3 15
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The complete solution = Zero-input response + Zero-state response 

( ) ( ) ( )

( )

− − − − −

− − −

−−

= + = − + + − + −

= − + −

t t t t t
zi zs

t t t

zero state responsezero input response
y t y t y t e e e e e

y t e e e

2 2 3

2 3

5 5 5 20 15

10 25 15

( ) , 0− − −= + − t t t
zs zs zsy t c e c e e t2 3

1 2 15

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( )

+ + + +

+ + ++

= +  =

= +  = − − =

zi zs zs

zi zs zs

y y y y

dy dy dydy
dt dt dt dt

0 0 0 0 0

0 0 00
5 5 10

( )
( ) , ,

+
+ = =  = − =zs

zs zs zs
dy

y c c
dt 1 2
0

0 0 10 5 20

( ) , 0− − −= − + − t t t
ziy t e e e t2 35 20 15
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Linearity properties of zero-input and zero-state response

▪ Zero-state response is linear with respect to the input.

▪ Zero-input response is linear with respect to the initial state.

LTI system

h(t)

x(t)

yzi(t)

yzs(t)

{y(k)(0−)}

( ) ( )
 

= =

−−

= + + k k
N Nt t

zik zsk pk k

zero state responsezero input response

y t c e c e y t
1 1

▪ Notes:

1. For LTI systems, the excitation and initial states can be thought of as two 

separate inputs.

2. When the ICs are not zero, there is no linear relationship between the 

complete response of the system and the external excitation.
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Determine the characteristic values                         as 1, 2, …, N0
0

N k
kk
a 

=
=

a. If all i are of order 1, ( ) i
N t

h ii
y t ce

=
=  1

b. If a root i is repeated k times (order k), ( ) ji
k N ttk i

h i ji j k
y t c t e c e

−

= = +
= + 1 1

▪ Note: the coefficients ci or cj should be determined by the initial conditions at 

t = 0+ simultaneously with those in the particular solution.

▪ The particular solution yp(t) represents any solution of the DE for the given 

input. It is also called Forced response y(t).

Homogeneous solution (natural response) & particular solution (forced response)

Homogeneous solution yh(t), also called Natural response satisfies
( )

=

=
N k

k k
k

d y t
a
dt0

0
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Input signal Particular solution

tn kntn + kn−1tn−1 + … k1t + k0 (Constant input is a special case with n = 0)

et
ket ,  is not the characteristic value (c.v.)

k1tet + k0et,  is the characteristic value with order 1

kktket + kk−1tk−1et + … k1tet + k0et,  is the c.v. with order k

cos(t) or sin(t) k1cos(t) + k2sin(t)

The complete solution = homogeneous solution + particular solution

( ) ( ) ( )  ( ) kt
h p k p

k
forced

natural

y t y t y t c e y t
= + = +

▪ A particular solution is usually obtained by assuming an output of the same 

general form as the input.
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▪ yh(t) depends on the structure and the initial state of the system.

▪ For a stable system, yh(t) tends to gradually disappear in time. Because of 

this, it is referred to as the transient response of the system.

▪ yp(t) depends on the input signal x(t) and the internal structure of the system.

▪ yp(t) is the part of the response that remains active after the homogeneous 

solution disappears. It is referred to as the steady-state response of the system.

▪ Example 10: Output response of RLC circuit

Find the complete solution, yh(t) and yp(t), for t  0 for the circuit in example 8

( ) ( )
( ) −+ + = tzs zs
zs

d y t dy t
y t e

dtdt

2
3

2 3 2 10

A particular solution: ( ) −=  = −t
py t ke k3 15
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The homogeneous solution:

( ) , 0− − −= + − t t ty t c e c e e t2 3
1 2 15

( )
( ) , ,

+
+ = =  = − =

dy
y c c

dt 1 2
0

0 0 5 10 25

( ) − −= +t t
hy t c e c e 21 2

( ) ( )

( )   , 0− − −= − + − 

ph

t t t

y t y t

y t e e e t2 310 25 15
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4. Impulse Response and Convolution

▪ The impulse response h(t) of an CTLTI system is the zero-state output of the 

system when a unit impulse (t) is applied at the input.

( ) ( )( ) / , ( ) , , , , n j
Nh a h j n− + += = = −1 0 1 0 0 0 1 2with post-initial conditions:

Continuous-time impulse response

▪ Example 11: Determine the impulse response of the CTLTI system given by: 

(a)                                              (b) ( ) ( )+ + = + +
d y dy d x dx

y t x t
dt dtdt dt

2 2

2 25 6 2 3

(a)  

( ) ( )k kN M

k kk k
k k

d h t d t
a b
dt dt



= =

= 
0 0

( ) ( )
d y dy

y t x t
dtdt

+ + =
2

2 5 6

( ) ( ); ( ) , ( ) ( ) ( ) ( )t td h dh dh
h t t h h t e e u t

dt dtdt
 + + − −+ + = = =  = −

2
2 3

2 5 6 0 1 0 0
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( ) ( ) ( ) ( ) ( ) ( ) ( )t t t th t e e u t h t t e e u t− − − −= −  = + −2 3 2 3
1 3 6

▪ Example 12: Determine the impulse response of the circuit in example 8 

( ) ( ) ( )
( )

d y t dy t dx t
y t

dt dtdt
+ + =

2

2 3 2

Due to the differentiation property and linearity of the CTLTI system, the 

impulse response h(t) satisfies:
( ) ( )

( ) ( )
d h t dh t

h t h t
dtdt

= + +
2
1 1

12 2 3

(b) Suppose h1(t) satisfies: 

( ) ( )
d h dh

h t t
dtdt

+ + =
2
1 1

12 5 6

( ) ( ) ( )t th t e e u t− −= − + 22
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▪ The step response s(t) of an CTLTI system is the zero-state output of the 

system when a unit step u(t) is applied at the input.

Continuous-time step response

( )
( ) , ( ) ( )

tds t
h t s t h d

dt
 

−
= = 

( )
( ) , ( ) ( )   

−
= = 

tdu t
t u t d

dt
According to the differential (or integral) properties of the CTLTI system,

▪ Example 13: Impulse response of the simple RC circuit

Consider the RC circuit. Let the element values be R = 1 Ω and C = 1/4 F. 

Assume y(0) = 0. Determine the impulse response of the system.

First method: using differential equation
( )/( ) ( )1

0

t t RC
RCy t e x d  − −= 
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/ /( )
( ) ( ) ( ) ( ) ( ) ( )− − −= −  = = =t RC t RC tds t
s t e u t h t e u t e u t

dt RC
41

1 4

Setting x(t) = (t) ( )/ /( ) ( ) ( ) ( )   − − − −= = =
t t RC t RC t

RC RCh t e d e u t e u t41 1
0

4

Second method: unit-step response of the system

The Convolution Integral

▪ The (CT) convolution of the functions x and h, denoted x  h, is defined as the 

function:
( ) ( ) ( ) ( )x t h t x h t d  



−
 = −

Properties of Convolution

▪ Is commutative. For any two functions x and h, x  h = h  x.

▪ Is associative. For any functions x, h1, and h2, (x  h1)  h2 = x  (h1  h2).
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▪ Is distributive with respect to addition. For any functions x, h1, and h2, 

x  (h1 + h2) = x  h1 + x  h2.

▪ For any function x, ( ) ( ) ( ) ( ) ( )x t t x t d x t    


−
 = − =

Moreover,  is the convolutional identity. That is, for any function x, x   = x.

▪ According to the linear time-invariant property of CTLTI system, the zero-state 

response output can be obtained as follows:

• When the input signal is (t), the zero-state response is h(t): (t) → h(t)

• According to time-invariant property: (t − ) → h(t − )

• According to homogeneous property: x()(t − ) → x()h(t − )

• According to additive property: ( ) ( ) ( ) ( ) ( )      
 

− −
= − → − x t x t d x h t d
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▪ For any LTI system with input x, zero-state response yzs, and impulse 

response h, the following relationship holds: yzs, = x  h.

▪ Example 14: Computing the Zero-State Response

CTLTI system with h(t) = e−2tu(t), determine the response yzs(t) for x(t) = e−tu(t).

( )( ) ( ) ( ) ( ) ( )     
 − − − − − −

−
= − = = = −  

t tt t t t t
zsy t x h t d e e d e e d e e u t2 2 2

0 0
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Interconnected Systems

▪ Two CTLTI systems with impulse responses h1(t) and h2(t) are connected in 

cascade as shown in the figure below: heq(t) = h1(t)  h2(t)

▪ Two CTLTI systems with impulse responses h1(t) and h2(t) are connected in 

parallel as shown in the figure below: heq(t) = h1(t) + h2(t)
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Eigenfunctions of CTLTI system

▪ If the output signal is a scalar multiple of the input 

signal, we refer to the signal as an eigenfunction 

and the multiplier as the eigenvalue. 

▪ Complex exponential are eigenfunctions of LTI systems.

( )( ) ( )( ) ( ) ( ) ( )s t st s sty t h x t h e d e h e d H s e    
 − −

− −
=  = = =  where s ∊ C

▪ We refer to H as the transfer function of the system.

▪ Note: We are talking of an exponential, which starts at t = −∞.

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Analyzing Continuous Time Systems in the Time Domain 37/432024-2025

5. Causality and Stability in Continuous-Time Systems

▪ A system T is said to be causal if, for every real constant t0, T{x(t0)} does not 

depend on x(t) for some t  t0.

▪ A causal system is such that the value of its output at any given point in time 

can depend on the value of its input at only the same or earlier points in time.

▪ For CTLTI systems the causality property can be related to the impulse 

response of the system h(t) = 0 for all t  0.

( ) ( ) ( ) ( ) ( ) ( ) ( )y t h t x t h x t d h x t d     
 

−
=  = − = − 0

▪ Note: If the independent variable t represents time, a system must be causal 

in order to be physically realizable.

Causality in continuous-time systems
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▪ Example 15: causal and non causal systems 

a. CT time-delay system y(t) = x(t) + x(t − 0.01) + x(t − 0.02) √

b. CT time-forward system y(t) = x(t) + x(t + 0.1)    X

Stability in continuous-time systems

▪ A system is said to be stable in the bounded-input bounded-output (BIBO) 

sense if any bounded input signal produce a bounded output signal. For 

stability of a continuous-time system: x(t)  Bx  ∞ ⇒ y(t)  By  ∞.

▪ For a CTLTI system to be stable, its impulse response must be absolute 

integrable.
( ) 



−
  h d

▪ Example 16: Stability of a first-order CTLTI system described by the DE:

( ) ( ) ( )+ =y t ay t x t
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The step response of the system is when x(t) = u(t)

( )
( ) ( ) ( ) −+ =  = +atdy t

ay t u t y t ce
dt a

1

y(0) = 0. (We take the initial value to be zero since the system is specified 

to be CTLTI. Non-zero initial conditions cannot be linear: Based on a zero 

input signal must produce a zero output signal).

y(0) = 0 ⇒ 0 = c + 1/a ⇒ c = −1/a 

( ) ( ) ( )−= − ats t e u t
a
1
1

( )
( ) ( ) ( )−= = = atds t
h t s t e u t

dt

( )
  −

−
= = 

ath t dt e dt
a0

1

Thus the system is stable if a  0.
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▪ Block diagrams for CT systems are constructed using three types of 

components, namely constant-gain amplifiers, signal adders and integrators.

6. Block Diagram Representation of Continuous-Time Systems

▪ Finding a block diagram from a DE is best explained with an example.
3 2 2

2 1 0 2 1 03 2 2

d y d y dy d x dx
a a a y b b b x

dt dtdt dt dt
+ + + = + +

▪ We will introduce an intermediate variable w(t)
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3 2 3 2

2 1 0 2 1 03 2 3 2

d w d w dw d w d w dw
a a a w x x a a a w

dt dtdt dt dt dt
+ + + =  = − − −

▪ The output signal y(t) can be 

expressed in terms of w(t) as:

2

2 1 02

d w dw
y b b b w

dtdt
= + +
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Imposing initial conditions

▪ Initial values of y(t) and its first N − 1 derivatives need to be converted to 

corresponding initial values of w(t) and its first N − 1 derivatives.

▪ Example 17: Block diagram for continuous-time system
3 2

3 2
5 17 13 2

d y d y dy dx
y x

dt dtdt dt
+ + + = + x(t) = cos(20t), ( ) , ,

t t

dy d y
y

dt dt= =

= = = −
2

2
0 0

0 1 2 4
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,
3 2

3 2
5 17 13 2

d w d w dw dw
w x y w

dt dtdt dt
+ + + = = +

( ) ( ) , ,

( ) ( )

= = = =

== = = = =

= = + = = +

= − = + = − − −,

t t t t

tt t t t t

dw dy dw d w
y w

dt dt dt dt

d y d w d w d w d w dw
x w

dtdt dt dt dt dt

2

2
0 0 0 0

2 2 3 3 2

2 2 3 3 2
00 0 0 0 0

0 1 0 2 2 2

4 2 0 5 17 13 0

x(0) = 1. Solving Equations, the initial values of integrator outputs are:

( ) , ,
t

t

dw
w

dt

d w

dt

=

=

−
= =

=

0

2

2
0

71 58
0

45 45

16
45
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