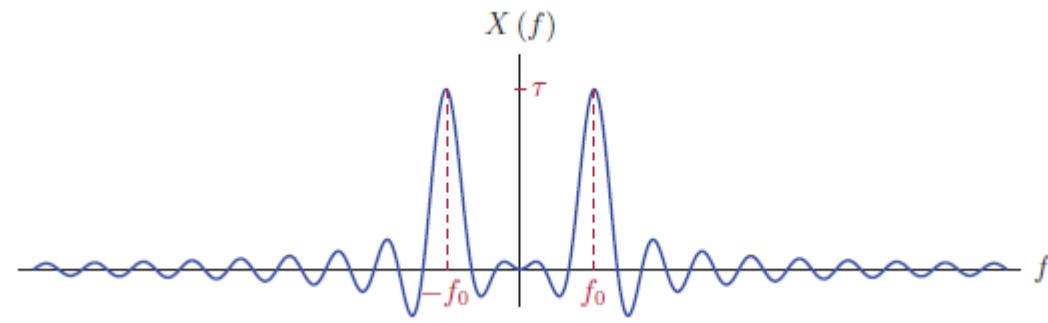


CEDC403: Signals and Systems

Lecture Notes 3: Analyzing Continuous Time Systems in the Time Domain



Ramez Koudsieh, Ph.D.

Faculty of Engineering

Department of Robotics and Intelligent Systems

Manara University

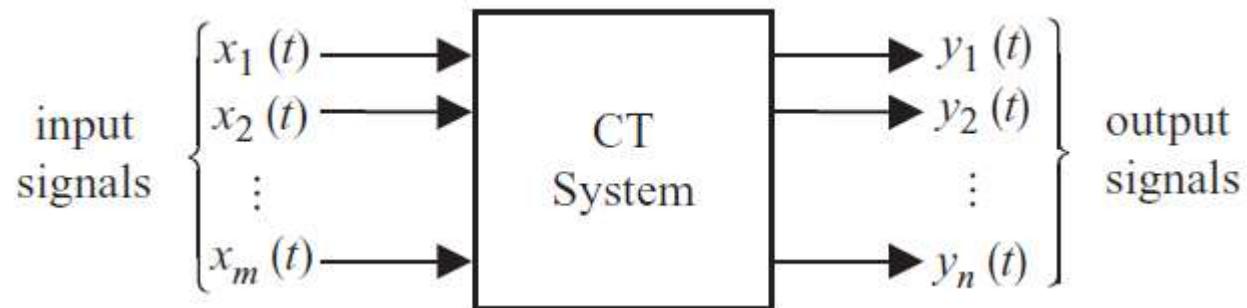
Chapter 2

Analyzing Continuous Time Systems in the Time Domain

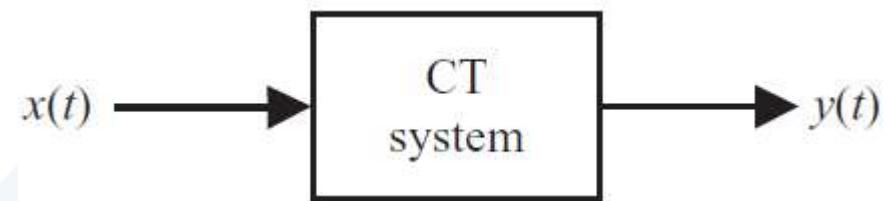
1. Linearity and Time Invariance
2. Differential Equations for Continuous-Time Systems
3. Constant-Coefficient Ordinary Differential Equations
 4. Impulse Response and Convolution
 5. Causality and Stability in Continuous-Time Systems
6. Block Diagram Representation of Continuous-Time Systems

Introduction

- A **system** is any **physical entity** that takes in a set of one or more physical signals and, in response, produces a new set of one or more physical signals.
- One representation of a general system is by a **block diagram**.

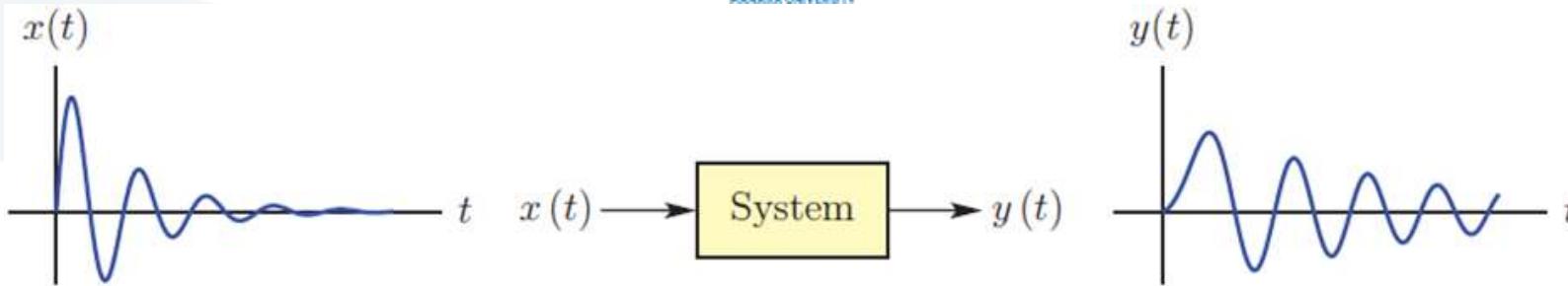


Multiple-input, multiple-output (MIMO) CT system



Single-input, single-output CT system

- If we focus our attention on **single-input/single-output** systems, the interplay between the system and its input and output signals can be graphically illustrated as:



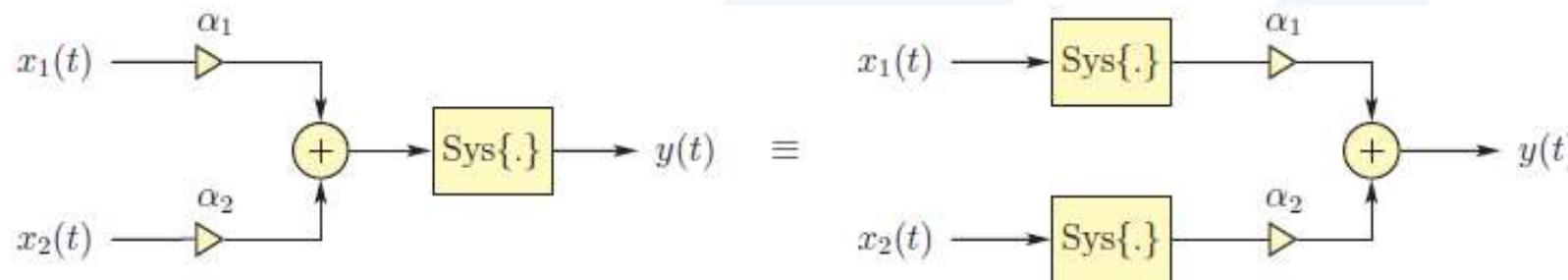
- The input signal is $x(t)$, and the output signal is $y(t)$. The system may be denoted by the equation $y(t) = T\{x(t)\} = \text{Sys}\{x(t)\}$, where $T\{.\} = \text{Sys}\{.\}$ indicates a **transformation** that defines the system in the time domain.
- A very simple example is a system that simply multiplies its input signal by a constant **gain factor** K to yield an output signal $y(t) = Kx(t)$,
- Or one that delays its input signal by a constant time delay τ $y(t) = x(t - \tau)$,
- Or one that produces an output signal proportional to the square of the input signal $y(t) = K[x(t)]^2$.

1. Linearity and Time Invariance

Linearity in continuous-time systems

- A system T is **linear**, if for all functions x_1 and x_2 and all constants α_1 and α_2 , the following condition holds:

$$T\{\alpha_1 x_1(t) + \alpha_2 x_2(t)\} = \alpha_1 T\{x_1(t)\} + \alpha_2 T\{x_2(t)\}.$$



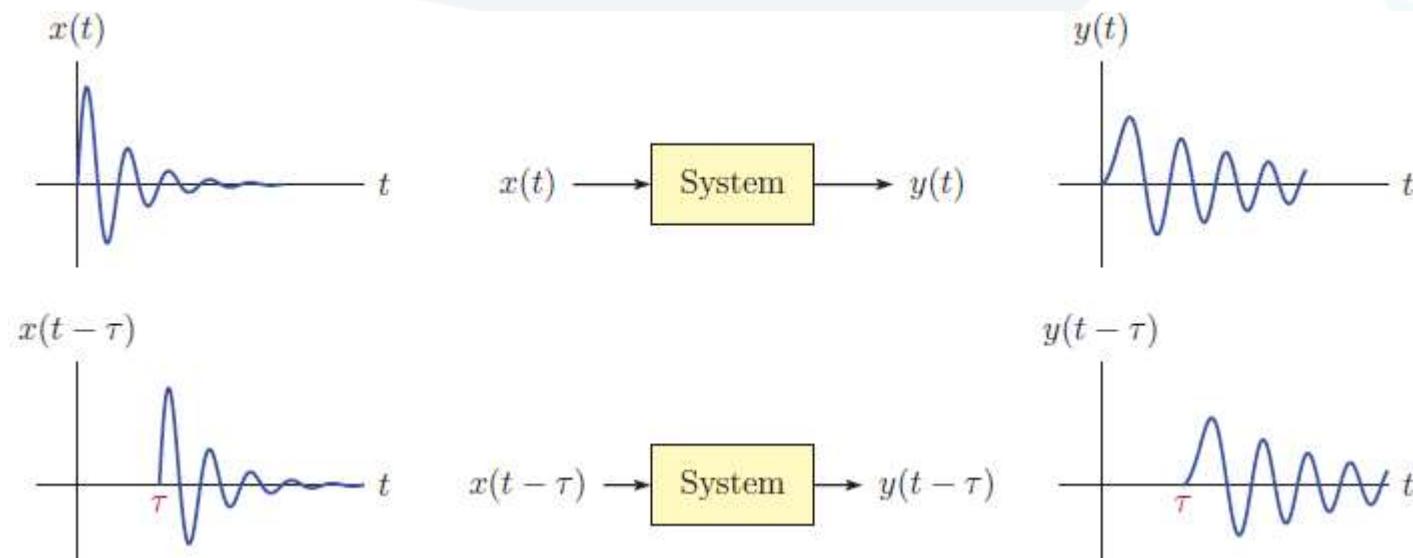
- A direct consequence of the linearity property is that, for linear systems, an **input** which is **zero** for all time results in an **output** which is **zero** for all time.

$$0 = T\{0x_1(t) + 0x_2(t)\} = 0 T\{x_1(t)\} + 0 T\{x_2(t)\} = 0 \text{ (zero-in/zero-out property)}$$

- Note: Linear systems are much easier to **design and analyze** than nonlinear systems.
- **Example 1:** Testing linearity of continuous-time systems
 - a. $y(t) = 5x(t)$ ✓
 - b. $y(t) = 5x(t) + 3$ ✗
 - c. $y(t) = 3[x(t)]^2$ ✗
 - d. $y(t) = \cos(x(t))$ ✗
- The property defining a linear system can be separated into two statements as follows:
 - If $T\{\alpha x(t)\} = \alpha T\{x(t)\}$ for all signals $x(t)$ and any constant α , then the system is **homogeneous**.
 - If $T\{x(t) + y(t)\} = T\{x(t)\} + T\{y(t)\}$ for all signals $x(t)$ and $y(t)$, then the system is **additive**.

Time Invariance in continuous-time systems

- A system T is said to be **time invariant (TI)** if, for every function x and every real constant τ , we have: $T\{x(t)\} = y(t) \Rightarrow T\{x(t - \tau)\} = y(t - \tau)$.



- Example 2:** Testing time invariance of continuous-time systems

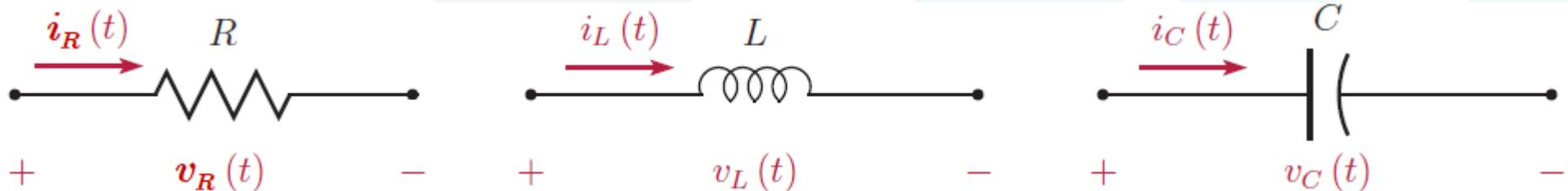
a. $y(t) = 5x(t)$ ✓

b. $y(t) = 3\cos(x(t))$ ✓

c. $y(t) = 3\cos(t)x(t)$ ✗

2. Differential Equations for Continuous-Time Systems

- One method of representing the relationship established by a system between its input and output signals is a **differential equation (DE)**.
- model for an **ideal resistor** is: $v_R(t) = R i_R(t)$
- model for an **ideal inductor** is: $v_L(t) = L \frac{di_L(t)}{dt}$
- model for an **ideal capacitor** is: $i_C(t) = C \frac{dv_C(t)}{dt}$

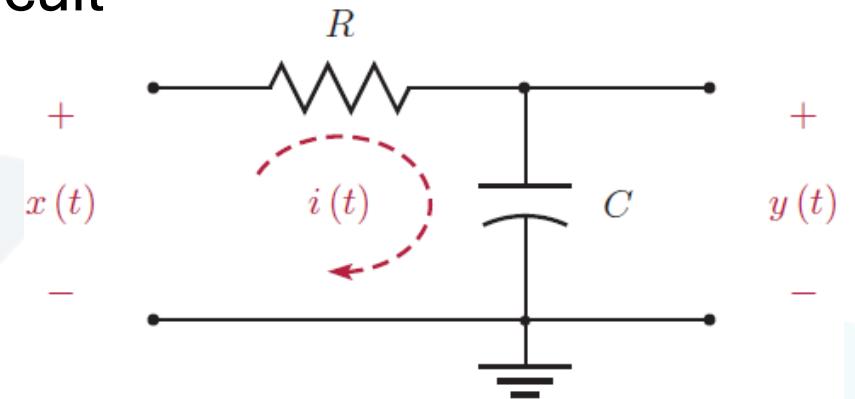


- **Example 3:** Differential equation for simple RC circuit

$$v_R(t) = Ri(t), \quad i(t) = C \frac{dy(t)}{dt}$$

$$RC \frac{dy(t)}{dt} + y(t) = x(t)$$

$$\frac{dy(t)}{dt} + \frac{1}{RC} y(t) = \frac{1}{RC} x(t)$$

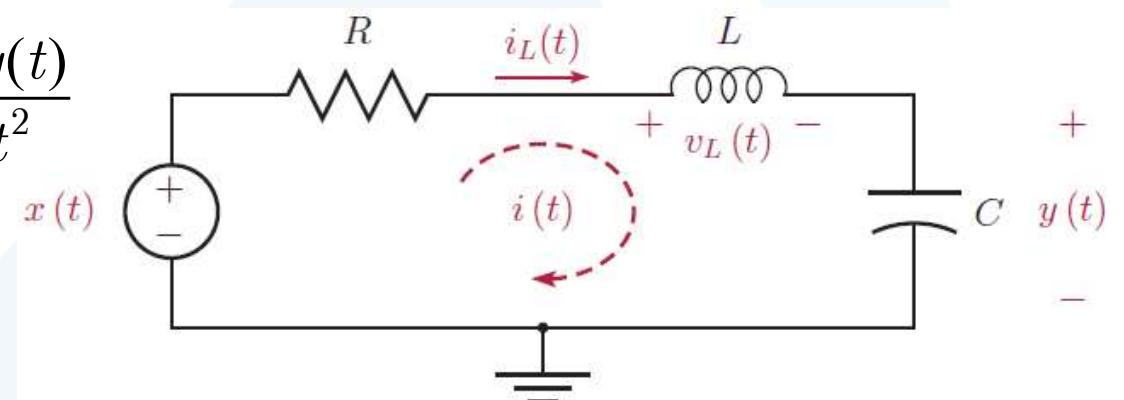


- **Example 4:** DE for RLC circuit

$$v_L(t) = L \frac{di(t)}{dt}, \quad i(t) = C \frac{dy(t)}{dt}, \quad \frac{di(t)}{dt} = C \frac{d^2y(t)}{dt^2}$$

$$-x(t) + Ri(t) + v_L(t) + y(t) = 0$$

$$-x(t) + RC \frac{dy(t)}{dt} + LC \frac{d^2y(t)}{dt^2} + y(t) = 0$$



$$\frac{d^2y(t)}{dt^2} + \frac{R}{L} \frac{dy(t)}{dt} + \frac{1}{LC} y(t) = \frac{1}{LC} x(t)$$

- **Example 5: Another RC circuit**

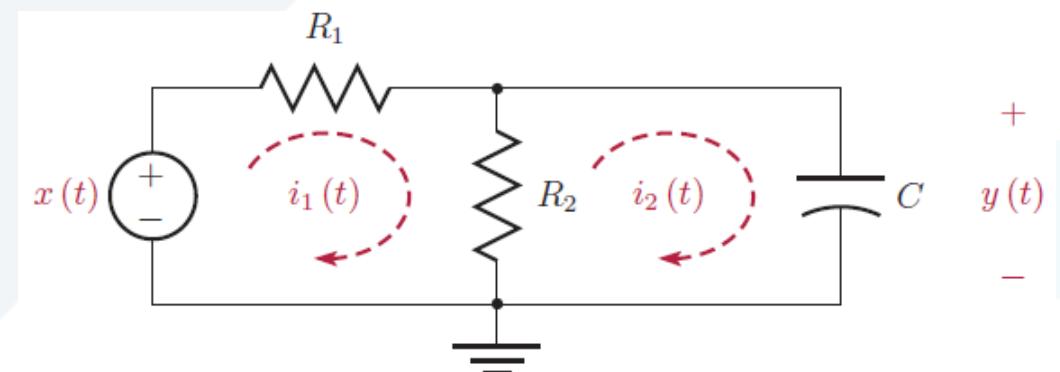
$$-x(t) + R_1 i_1(t) + R_2 [i_1(t) - i_2(t)] = 0$$

$$R_2 [i_2(t) - i_1(t)] + y(t) = 0$$

$$i_2(t) = C \frac{dy(t)}{dt} \Rightarrow i_1(t) = C \frac{dy(t)}{dt} + \frac{1}{R_2} y(t)$$

$$-x(t) + R_1 C \frac{dy(t)}{dt} - \frac{R_1 + R_2}{R_2} y(t) = 0$$

$$\frac{dy(t)}{dt} + \frac{R_1 + R_2}{R_1 R_2 C} y(t) = \frac{1}{R_1 C} x(t)$$



3. Constant-Coefficient Ordinary Differential Equations

- In general, CTLTI systems can be modeled with ordinary differential equations that have constant coefficients.

$$\sum_{k=0}^N a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^M b_k \frac{d^k x(t)}{dt^k}$$

- In general, a constant-coefficient ODE has a **family of solutions**. In order to find a **unique solution** for $y(t)$, **initial values** of the output signal and its first $N-1$ derivatives (**initial conditions ICs**) need to be specified at a time instant $t = t_0$.

$$y(t_0), \quad \left. \frac{dy(t)}{dt} \right|_{t=t_0}, \dots, \quad \left. \frac{d^{N-1}y(t)}{dt^{N-1}} \right|_{t=t_0} \quad \text{to find the solution for } t > t_0$$

- Initial conditions (ICs) also represent the **memory** of continuous-time systems.

- The **ICs** in a DE of an LTI system are directly related to the initial values of the **energy** storage devices in the system, such as **initial voltages** on capacitors and **initial currents** through inductors.
- A system with zero ICs is said to be **at rest (initially relaxed)**.

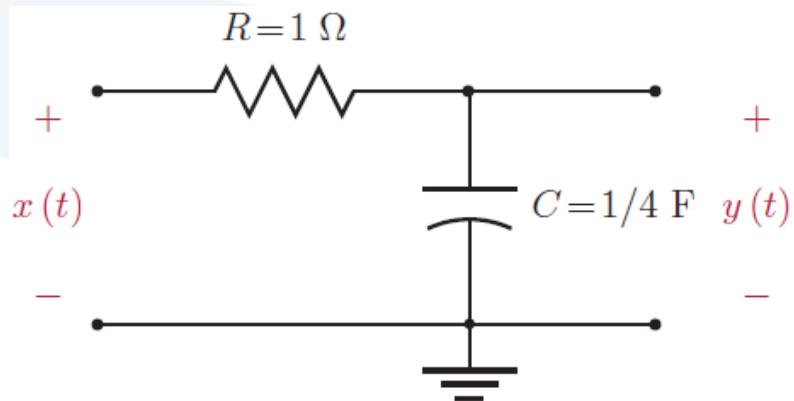
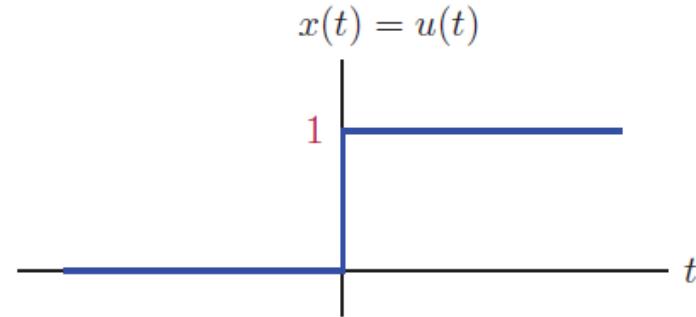
Solving Linear Differential Equations

- The differential equation: $\frac{dy(t)}{dt} + \alpha y(t) = r(t)$, $y(t_0)$: specified is solved as:

$$y(t) = e^{-\alpha(t-t_0)}y(t_0) + \int_{t_0}^t e^{-\alpha(t-\tau)}r(\tau)d\tau$$

- **Example 6:** Unit-step response of the simple RC circuit ($y(0) = 0$)

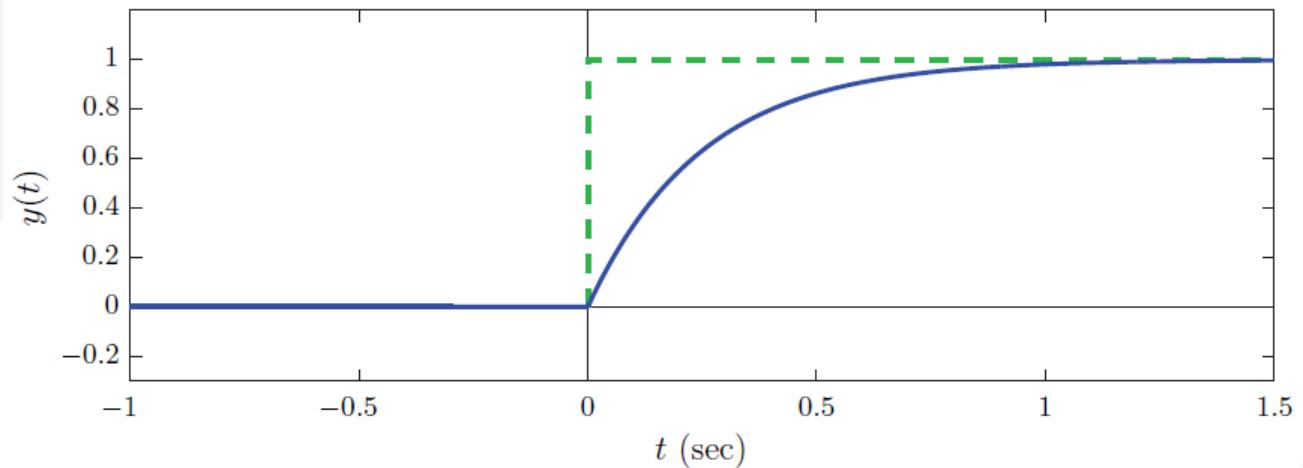
$$\frac{dy(t)}{dt} + \frac{1}{RC}y(t) = \frac{1}{RC}u(t) \Rightarrow \frac{dy(t)}{dt} + 4y(t) = 4u(t)$$



$$y(t) = \int_0^t e^{-(t-\tau)/RC} \frac{1}{RC} u(\tau) d\tau = \frac{e^{-t/RC}}{RC} \int_0^t e^{\tau/RC} d\tau = 1 - e^{-t/RC}, \quad t \geq 0$$

$$y(t) = (1 - e^{-t/RC})u(t)$$

$$y(t) = (1 - e^{-4t})u(t)$$



- **Example 7:** Pulse response of the simple RC circuit

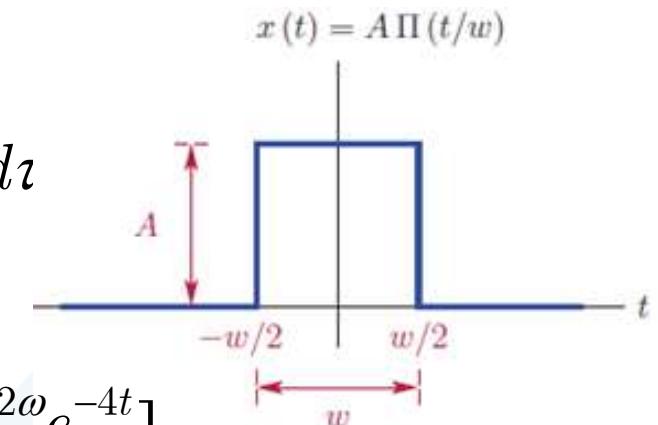
$$\frac{dy(t)}{dt} + 4y(t) = 4A \Pi(t/\omega) \Rightarrow y(t) = \int_{-\omega/2}^t e^{-4(t-\tau)} 4A \Pi(\tau/\omega) d\tau$$

Case 1: $t \leq -\omega/2$, $y(t) = 0$

Case 2: $-\omega/2 < t \leq \omega/2$, $y(t) = 4A \int_{-\omega/2}^t e^{-4(t-\tau)} d\tau = A[1 - e^{-2\omega} e^{-4t}]$

Case 3: $t > \omega/2$, $y(t) = 4A \int_{-\omega/2}^{\omega/2} e^{-4(t-\tau)} d\tau = A e^{-4t} [e^{2\omega} - e^{-2\omega}]$

$$y(t) = \begin{cases} 0, & t < -\frac{\omega}{2} \\ A[1 - e^{-2\omega} e^{-4t}], & -\frac{\omega}{2} < t \leq \frac{\omega}{2} \\ A e^{-4t} [e^{2\omega} - e^{-2\omega}], & t > \frac{\omega}{2} \end{cases}$$



Solution of the general differential equation

- The **complete solution** of a linear constant coefficient differential equation can be **decomposed** into:

1. The point of view of Mathematics:

Homogenous solution $y_h(t)$ + Particular solution $y_p(t)$.

2. The point of view of Engineer:

Natural response $y_n(t)$ + Forced response $y_\phi(t)$.

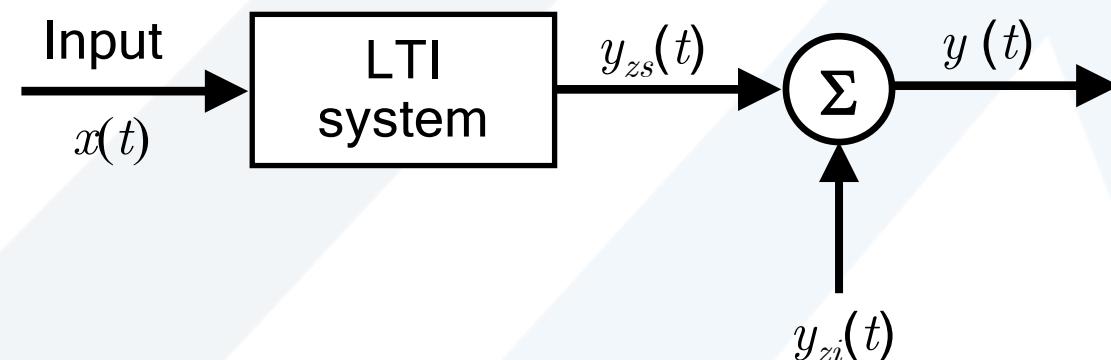
3. The point of view of control engineer:

Zero-input response $y_{zi}(t)$ + Zero-state response $y_{zs}(t)$.

Transient response $y_t(t)$ + Steady state response $y_{ss}(t)$.

Zero-input response and Zero-states response

- The **zero-input response** is the system output when the input $x(t) = 0$. It is the result of **internal system conditions** (energy storages, initial conditions).
- In contrast, the **zero-state response** is the system output to the **external input $x(t)$** when the system is in **zero state** (all initial conditions are zero).
- Zero-state response is **linear** with respect to the input. While zero-input response is **linear** with respect to the initial conditions.



Zero-input response $y_{zi}(t)$

- The zero-input response $y_{zi}(t)$ is the output of the system when the external input $x(t)$ is **zero**. It is produced by the system because of the **initial conditions**.

Zero-input response $y_{zi}(t)$ satisfies: $\sum_{k=0}^N a_k \frac{d^k y_{zi}(t)}{dt^k} = 0$.

Determine the **characteristic equation** $\sum_{k=0}^N a_k \alpha^k = 0$ of the system by replacing the k -th derivative of the output signal $y_{zi}(t)$ with α^k .

$$\frac{d^k y_{zi}(t)}{dt^k} \rightarrow \alpha^k$$

Let the roots of the **characteristic polynomial** $\sum_{k=0}^N a_k \alpha^k$ be $\alpha_1, \alpha_2, \dots, \alpha_N$.

- If all α_k are of order 1, $y_{zi}(t) = \sum_{k=1}^N c_{zik} e^{\alpha_k t}$, c_{zik} determined by the ICs $\frac{d^k y_{zi}}{dt^k}(0^+)$

Practical Initial Conditions and the Meaning of 0^- and 0^+

- In practical problems, we must derive ICs from the physical situation. For example, in an RLC circuit, we may be given the conditions (initial capacitor voltages, initial inductor currents, etc.).
- In practice, the input is assumed to start at $t = 0$. The conditions immediately before $t = 0$ are the conditions at $t = 0^-$ (Pre-initial conditions), and those immediately after $t = 0$ are the conditions at $t = 0^+$ (Post-initial conditions).
- In practice, we are likely to know the ICs at $t = 0^-$ rather than at $t = 0^+$. The two sets of conditions are different, although in some cases they may be identical.

- The **total response** $y(t)$ consists of two components: the **zero-input response** $y_{zi}(t)$ and the **zero-state response** $y_{zs}(t)$.
- At $t = 0^-$, the total response $y(t)$ consists solely of $y_{zi}(t)$ because the input has not started yet. Hence the initial conditions on $y(t)$ are identical to those of $y_{zi}(t)$. Thus, $y^{(j)}(0^-) = y_{zi}^{(j)}(0^-)$, $j = 0, 1, \dots, n - 1$.
- Moreover, $y_{zi}(t)$ does not depend on the input $x(t)$. Hence, application of $x(t)$ at $t = 0$ does not affect $y_{zi}(t)$. Thus,
- **Note:** For $y_{zi}(t)$, there is no distinction between ICs at $t = 0^-$, 0 , and 0^+ . It is not the case for the **total response**, in general.

$$y_{zi}^{(j)}(0^+) = y_{zi}^{(j)}(0^-) = y^{(j)}(0^-), \quad j = 0, 1, \dots, n - 1$$

$$y^{(j)}(0^-) \neq y^{(j)}(0^+), \quad j = 0, 1, \dots, n - 1$$

- **Example 8:** Zero-input response of RLC circuit

A voltage $x(t) = 10e^{-3t}u(t)$ is applied at the input of the RLC circuit. Find the zero-input response for $t \geq 0$ if the initial inductor current is $i_L(0^-) = 0$, and the initial capacitor voltage $v_C(0^-) = 5$ V. Use $R = 3 \Omega$, $L = 1$ H and $C = 1/2$ F.

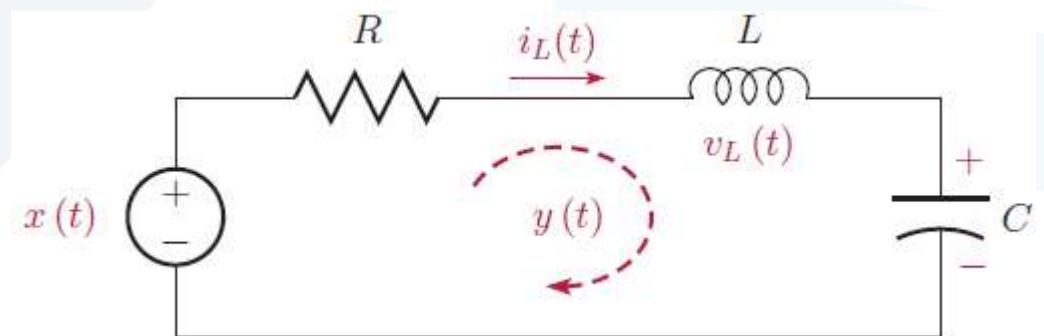
$$v_L(t) + v_R(t) + v_C(t) = x(t)$$

$$\frac{dy(t)}{dt} + 3y(t) + 2 \int_{-\infty}^t y(\tau) d\tau = x(t)$$

$$\frac{d^2y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2y(t) = \frac{dx(t)}{dt}$$

$$y(0^-) = y_{zi}(0^-) = y_{zi}(0^+) = 0$$

$$\frac{dy(t)}{dt} + 3y(t) + v_C(t) = x(t) \Rightarrow \frac{dy(0^-)}{dt} + 3y(0^-) + v_C(0^-) = x(0^-) \Rightarrow \frac{dy(0^-)}{dt} = -5$$



$$\frac{dy_{zi}(0^+)}{dt} = \frac{dy_{zi}(0^-)}{dt} = \frac{dy(0^-)}{dt} = -5$$

$$\frac{d^2y_{zi}(t)}{dt^2} + 3 \frac{dy_{zi}(t)}{dt} + 2y_{zi}(t) = 0 \Rightarrow y_{zi}(t) = c_{zi1}e^{-t} + c_{zi2}e^{-2t}$$

$$y_{zi}(0^+) = 0, \frac{dy_{zi}(0^+)}{dt} = -5 \Rightarrow c_{zi1} = -c_{zi2} = -5 \Rightarrow y_{zi}(t) = -5e^{-t} + 5e^{-2t}, \quad t \geq 0$$

Let us compare $y(0^-)$, $dy/dt(0^-)$ with $y(0^+)$, $dy/dt(0^+)$ for the total response.

$$\frac{dy(0^-)}{dt} + 3y(0^-) + v_C(0^-) = 0$$

$$\frac{dy(0^+)}{dt} + 3y(0^+) + v_C(0^+) = 10$$

$$\Rightarrow \frac{dy(0^-)}{dt} = -5 \neq \frac{dy(0^+)}{dt} = 5$$

The loop current $y(0^+) = y(0^-) = 0$ because it cannot **change instantaneously** in the absence of **impulsive voltage**. The same is **true** of the capacitor voltage. Hence, $v_C(0^+) = v_C(0^-) = 5$.

Zero-state response $y_{zs}(t)$

- The zero-state response $y_{zs}(t)$ is the output of the system to the **external input signal $x(t)$** . The **initial conditions** of the system are assumed to be **zero**.
- If all α_k are of order 1, $y_{zs}(t) = \sum_{k=1}^N c_{zsk} e^{\alpha_k t} + y_p(t)$
 c_{zsk} could be determined by the initial conditions $\frac{d^k y_{zs}}{dt^k}(0^+)$
 $y^{(j)}(0^+) = y_{zi}^{(j)}(0^+) + y_{zs}^{(j)}(0^+)$, $j = 0, 1, \dots, n - 1$
- **Example 9:** Zero-state response of RLC circuit
 Find the zero-state response for $t \geq 0$ for the circuit in **example 8**

$$\frac{d^2 y_{zs}(t)}{dt^2} + 3 \frac{dy_{zs}(t)}{dt} + 2y_{zs}(t) = 10e^{-3t}$$

A particular solution: $y_p(t) = ke^{-3t} \Rightarrow k = -15$

$$y_{zs}(t) = c_{zs1}e^{-t} + c_{zs2}e^{-2t} - 15e^{-3t}, \quad t \geq 0$$

$$y(0^+) = y_{zi}(0^+) + y_{zs}(0^+) \Rightarrow y_{zs}(0^+) = 0$$

$$\frac{dy(0^+)}{dt} = \frac{dy_{zi}(0^+)}{dt} + \frac{dy_{zs}(0^+)}{dt} \Rightarrow \frac{dy_{zs}(0^+)}{dt} = 5 - (-5) = 10$$

$$y_{zs}(0^+) = 0, \frac{dy_{zs}(0^+)}{dt} = 10 \Rightarrow c_{zs1} = -5, c_{zs2} = 20$$

$$y_{zi}(t) = -5e^{-t} + 20e^{-2t} - 15e^{-3t}, \quad t \geq 0$$

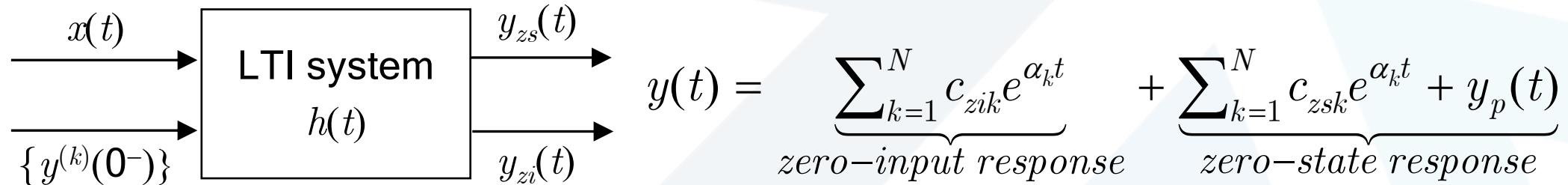
The complete solution = Zero-input response + Zero-state response

$$y(t) = y_{zi}(t) + y_{zs}(t) = \underbrace{-5e^{-t} + 5e^{-2t}}_{\text{zero-input response}} + \underbrace{-5e^{-t} + 20e^{-2t} - 15e^{-3t}}_{\text{zero-state response}}$$

$$y(t) = -10e^{-t} + 25e^{-2t} - 15e^{-3t}$$

Linearity properties of zero-input and zero-state response

- Zero-state response is **linear** with respect to the input.
- Zero-input response is **linear** with respect to the initial state.



- **Notes:**
 1. For LTI systems, the excitation and initial states can be thought of as two **separate inputs**.
 2. When the ICs are not zero, there is **no linear relationship** between the complete response of the system and the external excitation.

Homogeneous solution (natural response) & particular solution (forced response)

Homogeneous solution $y_h(t)$, also called **Natural response** satisfies $\sum_{k=0}^N a_k \frac{d^k y(t)}{dt^k} = 0$

Determine the characteristic values $\sum_{k=0}^N a_k \alpha^k = 0$ as $\alpha_1, \alpha_2, \dots, \alpha_N$

a. If all α_i are of order 1, $y_h(t) = \sum_{i=1}^N c_i e^{\alpha_i t}$

b. If a root α_i is repeated k times (order k), $y_h(t) = \sum_{i=1}^k c_i t^{k-i} e^{\alpha_i t} + \sum_{j=k+1}^N c_j e^{\alpha_j t}$

- **Note:** the coefficients c_i or c_j should be determined by the initial conditions at $t = 0^+$ simultaneously with those in the particular solution.
- The **particular solution** $y_p(t)$ represents any solution of the DE for the given input. It is also called **Forced response** $y_\phi(t)$.

- A **particular solution** is usually obtained by assuming an output of the same general form as the input.

Input signal	Particular solution
t^n	$k_n t^n + k_{n-1} t^{n-1} + \dots + k_1 t + k_0$ (Constant input is a special case with $n = 0$)
$e^{\alpha t}$	$ke^{\alpha t}$, α is not the characteristic value (c.v.) $k_1 t e^{\alpha t} + k_0 e^{\alpha t}$, α is the characteristic value with order 1 $k_k t^k e^{\alpha t} + k_{k-1} t^{k-1} e^{\alpha t} + \dots + k_1 t e^{\alpha t} + k_0 e^{\alpha t}$, α is the c.v. with order k
$\cos(\omega t)$ or $\sin(\omega t)$	$k_1 \cos(\omega t) + k_2 \sin(\omega t)$

The complete solution = homogeneous solution + particular solution

$$y(t) = y_h(t) + y_p(t) = \underbrace{\sum_k c_k e^{\alpha_k t}}_{natural} + \underbrace{y_p(t)}_{forced}$$

- $y_h(t)$ depends on the **structure** and the **initial state** of the system.
- For a **stable** system, $y_h(t)$ tends to gradually disappear in time. Because of this, it is referred to as the **transient response** of the system.
- $y_p(t)$ depends on the input signal $x(t)$ and the **internal structure** of the system.
- $y_p(t)$ is the part of the response that remains **active** after the homogeneous solution disappears. It is referred to as the **steady-state response** of the system.
- **Example 10:** Output response of *RLC* circuit

Find the complete solution, $y_h(t)$ and $y_p(t)$, for $t \geq 0$ for the circuit in **example 8**

$$\frac{d^2y_{zs}(t)}{dt^2} + 3\frac{dy_{zs}(t)}{dt} + 2y_{zs}(t) = 10e^{-3t}$$

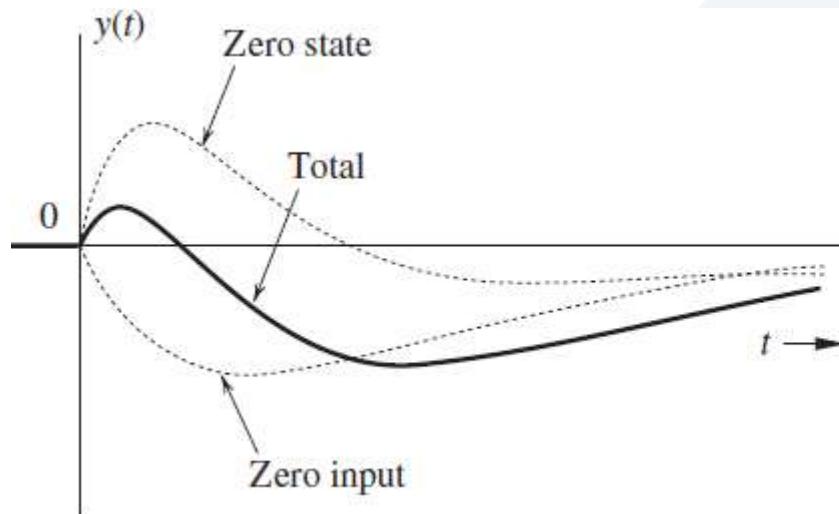
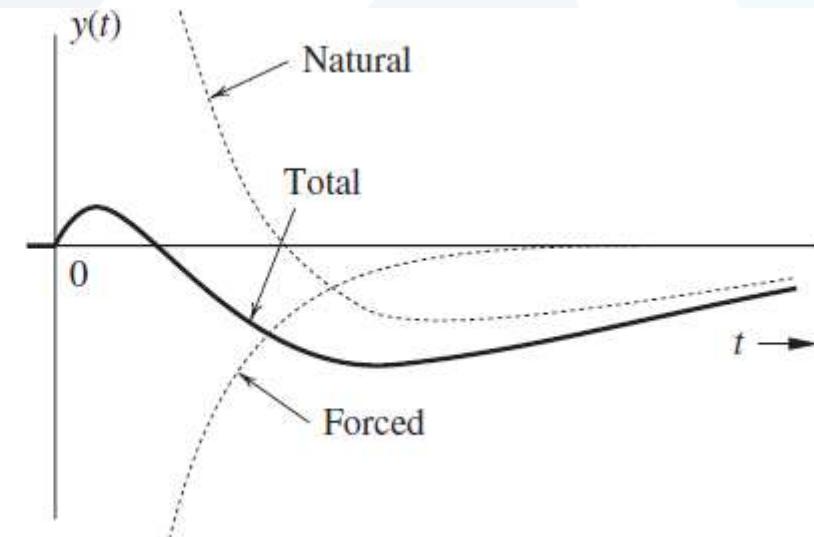
A particular solution: $y_p(t) = ke^{-3t} \Rightarrow k = -15$

The homogeneous solution: $y_h(t) = c_1 e^{-t} + c_2 e^{-2t}$

$$y(t) = c_1 e^{-t} + c_2 e^{-2t} - 15e^{-3t}, \quad t \geq 0$$

$$y(0^+) = 0, \frac{dy(0^+)}{dt} = 5 \Rightarrow c_1 = -10, c_2 = 25$$

$$y(t) = \underbrace{-10e^{-t} + 25e^{-2t}}_{y_h(t)} - \underbrace{15e^{-3t}}_{y_p(t)}, t \geq 0$$



4. Impulse Response and Convolution

Continuous-time impulse response

- The **impulse response** $h(t)$ of an CTTLI system is the **zero-state** output of the system when a unit **impulse** $\delta(t)$ is applied at the input.

$$\sum_{k=0}^N a_k \frac{d^k h(t)}{dt^k} = \sum_{k=0}^M b_k \frac{d^k \delta(t)}{dt^k}$$

with post-initial conditions: $h^{(n-1)}(0^+) = 1/a_N$, $h^{(j)}(0^+) = 0$, $j = 0, 1, \dots, n-2$

- Example 11:** Determine the impulse response of the CTTLI system given by:

$$(a) \frac{d^2y}{dt^2} + 5 \frac{dy}{dt} + 6y(t) = x(t)$$

$$(b) \frac{d^2y}{dt^2} + 5 \frac{dy}{dt} + 6y(t) = \frac{d^2x}{dt^2} + 2 \frac{dx}{dt} + 3x(t)$$

$$(a) \frac{d^2h}{dt^2} + 5 \frac{dh}{dt} + 6h(t) = \delta(t); \frac{dh}{dt}(0^+) = 1, h(0^+) = 0 \Rightarrow h(t) = (e^{-2t} - e^{-3t})u(t)$$

(b) Suppose $h_1(t)$ satisfies:

$$\frac{d^2h_1}{dt^2} + 5\frac{dh_1}{dt} + 6h_1(t) = \delta(t)$$

Due to the differentiation property and linearity of the CTLTI system, the impulse response $h(t)$ satisfies: $h(t) = \frac{d^2h_1(t)}{dt^2} + 2\frac{dh_1(t)}{dt} + 3h_1(t)$

$$h_1(t) = (e^{-2t} - e^{-3t})u(t) \Rightarrow h(t) = \delta(t) + (3e^{-2t} - 6e^{-3t})u(t)$$

- **Example 12:** Determine the impulse response of the circuit in **example 8**

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = \frac{dx(t)}{dt}$$

$$h(t) = (-e^{-t} + 2e^{-2t})u(t)$$

Continuous-time step response

- The **step response** $s(t)$ of an CTLTI system is the **zero-state** output of the system when a unit **step** $u(t)$ is applied at the input.

$$\delta(t) = \frac{du(t)}{dt}, \quad u(t) = \int_{-\infty}^t \delta(\tau) d\tau$$

According to the differential (or integral) properties of the CTLTI system,

$$h(t) = \frac{ds(t)}{dt}, \quad s(t) = \int_{-\infty}^t h(\tau) d\tau$$

- **Example 13:** Impulse response of the simple RC circuit

Consider the RC circuit. Let the element values be $R = 1 \Omega$ and $C = 1/4 \text{ F}$.

Assume $y(0) = 0$. Determine the impulse response of the system.

First method: using differential equation $y(t) = \int_0^t e^{-(t-\tau)/RC} \frac{1}{RC} x(\tau) d\tau$

Setting $x(t) = \delta(t)$ $h(t) = \int_0^t e^{-(t-\tau)/RC} \frac{1}{RC} \delta(\tau) d\tau = \frac{1}{RC} e^{-t/RC} u(t) = 4e^{-4t} u(t)$

Second method: unit-step response of the system

$$s(t) = (1 - e^{-t/RC})u(t) \Rightarrow h(t) = \frac{ds(t)}{dt} = \frac{1}{RC} e^{-t/RC} u(t) = 4e^{-4t} u(t)$$

The Convolution Integral

- The (CT) **convolution** of the functions x and h , denoted $x * h$, is defined as the function:

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

Properties of Convolution

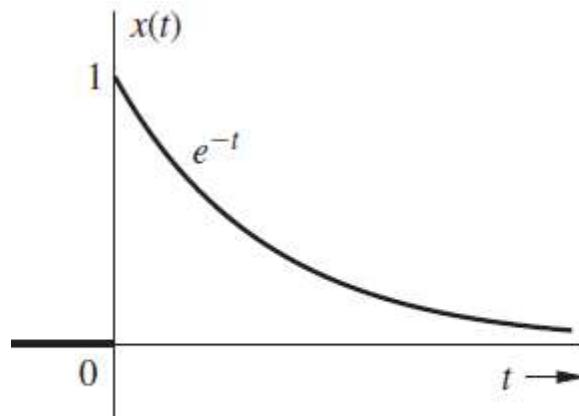
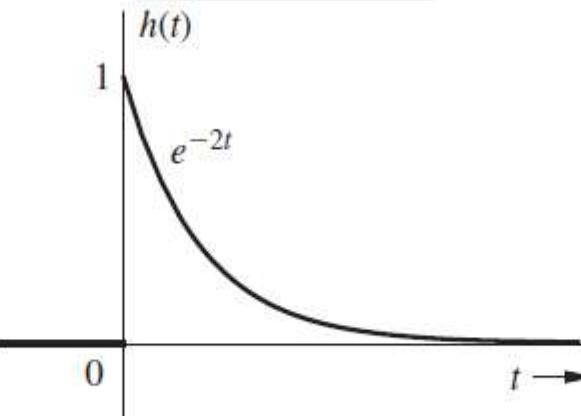
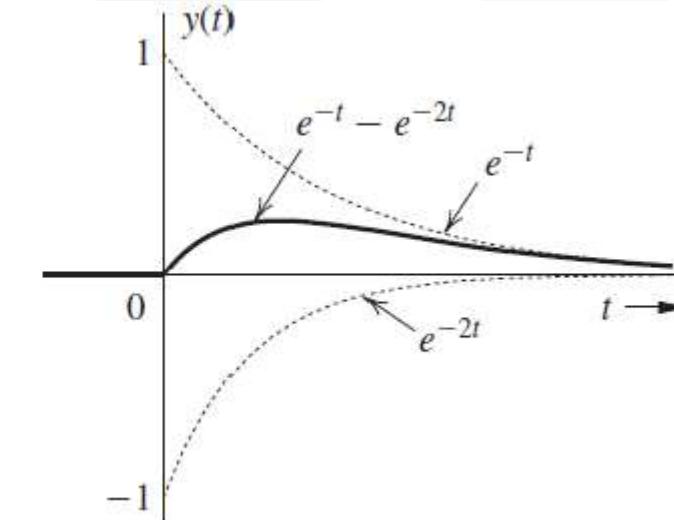
- Is **commutative**. For any two functions x and h , $x * h = h * x$.
- Is **associative**. For any functions x , h_1 , and h_2 , $(x * h_1) * h_2 = x * (h_1 * h_2)$.

- Is **distributive** with respect to addition. For any functions x , h_1 , and h_2 ,
$$x * (h_1 + h_2) = x * h_1 + x * h_2.$$
- For any function x , $x(t) * \delta(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t - \tau)d\tau = x(t)$
Moreover, δ is the **convolutional identity**. That is, for any function x , $x * \delta = x$.
- According to the linear time-invariant property of CTLTI system, the zero-state response output can be obtained as follows:
 - When the input signal is $\delta(t)$, the zero-state response is $h(t)$: $\delta(t) \rightarrow h(t)$
 - According to time-invariant property: $\delta(t - \tau) \rightarrow h(t - \tau)$
 - According to homogeneous property: $x(\tau)\delta(t - \tau) \rightarrow x(\tau)h(t - \tau)$
 - According to additive property: $x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t - \tau)d\tau \rightarrow \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$

- For any LTI system with input x , zero-state response y_{zs} , and impulse response h , the following relationship holds: $y_{zs} = x * h$.
- Example 14: Computing the Zero-State Response**

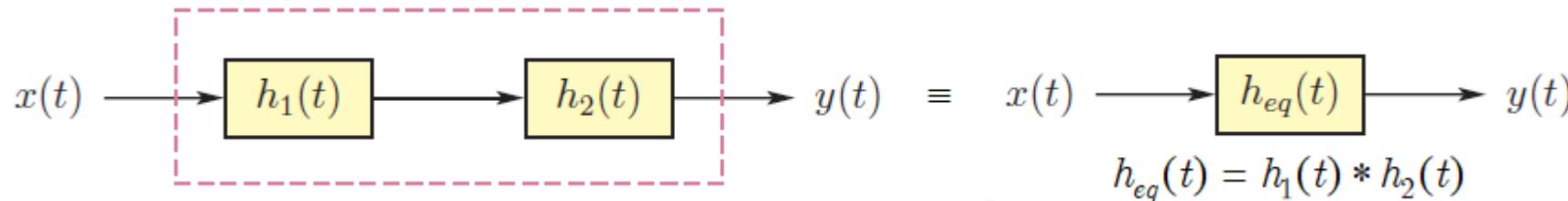
CTLTI system with $h(t) = e^{-2t}u(t)$, determine the response $y_{zs}(t)$ for $x(t) = e^{-t}u(t)$.

$$y_{zs}(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau = \int_0^t e^{-t}e^{-2(t-\tau)}d\tau = e^{-2t} \int_0^t e^{\tau}d\tau = (e^{-t} - e^{-2t})u(t)$$

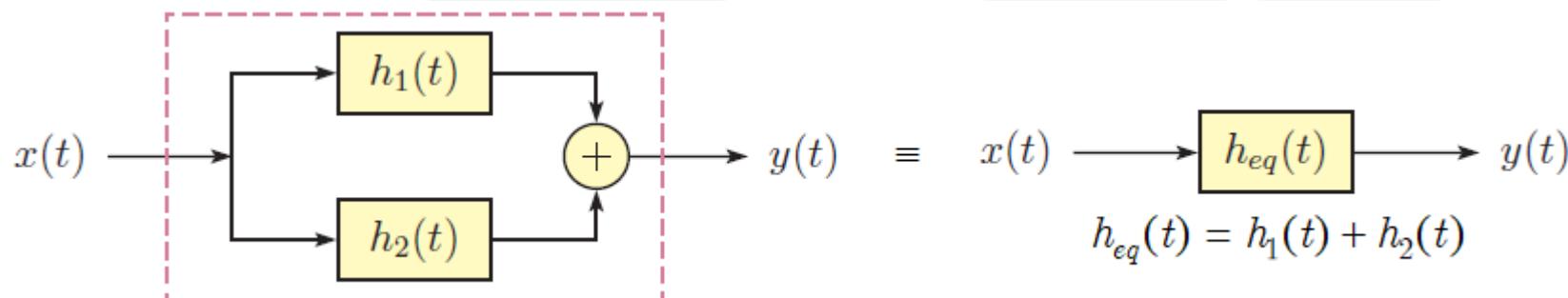


Interconnected Systems

- Two CT-LTI systems with impulse responses $h_1(t)$ and $h_2(t)$ are connected in cascade as shown in the figure below: $h_{eq}(t) = h_1(t) * h_2(t)$

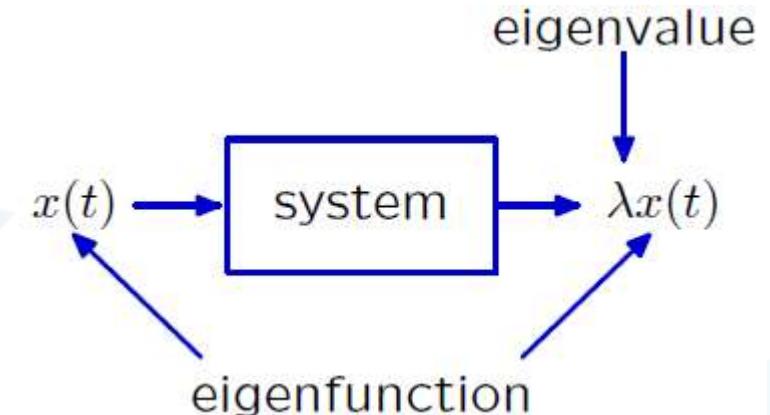
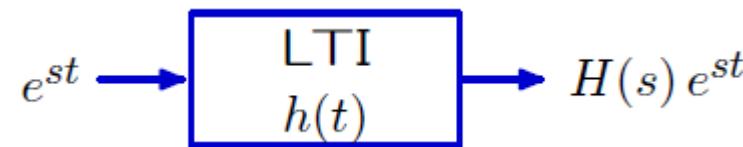


- Two CT-LTI systems with impulse responses $h_1(t)$ and $h_2(t)$ are connected in parallel as shown in the figure below: $h_{eq}(t) = h_1(t) + h_2(t)$



Eigenfunctions of CTLTI system

- If the output signal is a scalar multiple of the input signal, we refer to the signal as an **eigenfunction** and the multiplier as the **eigenvalue**.
- **Complex exponential** are eigenfunctions of LTI systems.



$$y(t) = (h * x)(t) = \int_{-\infty}^{\infty} h(\tau) e^{s(t-\tau)} d\tau = e^{st} \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau = H(s) e^{st} \quad \text{where } s \in C$$

- **Note:** We are talking of an exponential, which starts at $t = -\infty$.
- We refer to H as the **transfer function** of the system.

5. Causality and Stability in Continuous-Time Systems

Causality in continuous-time systems

- A system T is said to be **causal** if, for every real constant t_0 , $T\{x(t_0)\}$ does not depend on $x(t)$ for some $t > t_0$.
- A **causal system** is such that the value of its output at any given point in time can depend on the value of its input at only the **same or earlier points** in time.
- For CT-LTI systems the **causality** property can be related to the impulse response of the system $h(t) = 0$ for all $t < 0$.

$$y(t) = h(t) * x(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau)d\tau = \int_0^{\infty} h(\tau)x(t - \tau)d\tau$$

- **Note:** If the independent variable t represents time, a system must be causal in order to be **physically realizable**.

- **Example 15:** causal and non causal systems

- a. CT time-delay system $y(t) = x(t) + x(t - 0.01) + x(t - 0.02)$ ✓
- b. CT time-forward system $y(t) = x(t) + x(t + 0.1)$ ✗

Stability in continuous-time systems

- A system is said to be **stable** in the **bounded-input bounded-output (BIBO)** sense if any bounded input signal produce a bounded output signal. For **stability** of a continuous-time system: $x(t) < B_x < \infty \Rightarrow y(t) < B_y < \infty$.
- For a CTLTI system to be **stable**, its impulse response must be **absolute integrable**.

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty$$

- **Example 16:** Stability of a first-order CTLTI system described by the DE:

$$\dot{y}(t) + ay(t) = x(t)$$

The step response of the system is when $x(t) = u(t)$

$$\frac{dy(t)}{dt} + ay(t) = u(t) \Rightarrow y(t) = ce^{-at} + \frac{1}{a}$$

$y(0) = 0$. (We take the initial value to be zero since the system is specified to be CTLTI. Non-zero initial conditions cannot be linear: Based on a zero input signal must produce a zero output signal).

$$y(0) = 0 \Rightarrow 0 = c + 1/a \Rightarrow c = -1/a$$

$$s(t) = \frac{1}{a} (1 - e^{-at}) u(t)$$

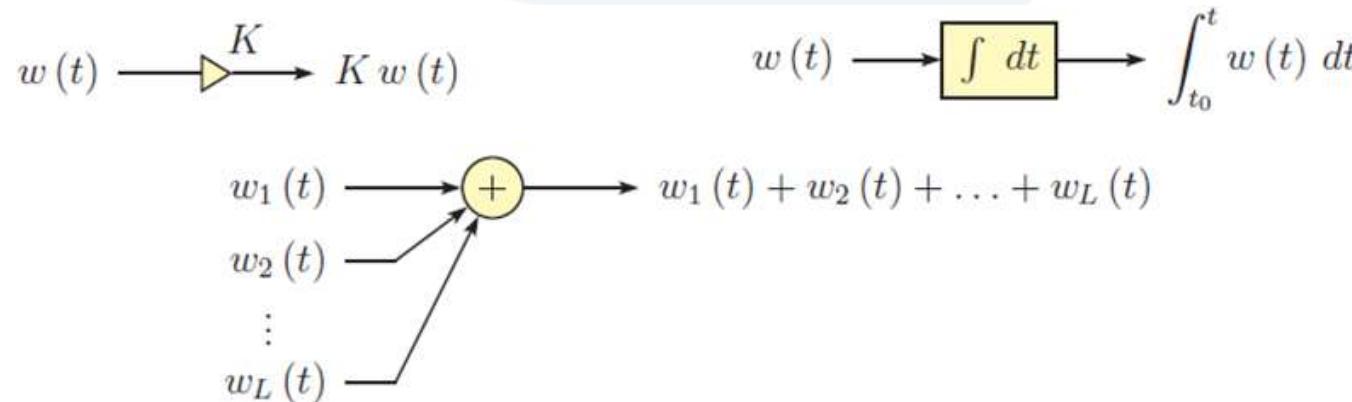
$$h(t) = \frac{ds(t)}{dt} = s(t) = e^{-at} u(t)$$

$$\int_{-\infty}^{\infty} |h(t)| dt = \int_0^{\infty} e^{-at} dt = \frac{1}{a}$$

Thus the system is stable if $a > 0$.

6. Block Diagram Representation of Continuous-Time Systems

- Block diagrams for CT systems are constructed using three types of components, namely **constant-gain amplifiers**, **signal adders** and **integrators**.



- Finding a block diagram from a DE is best explained with an example.

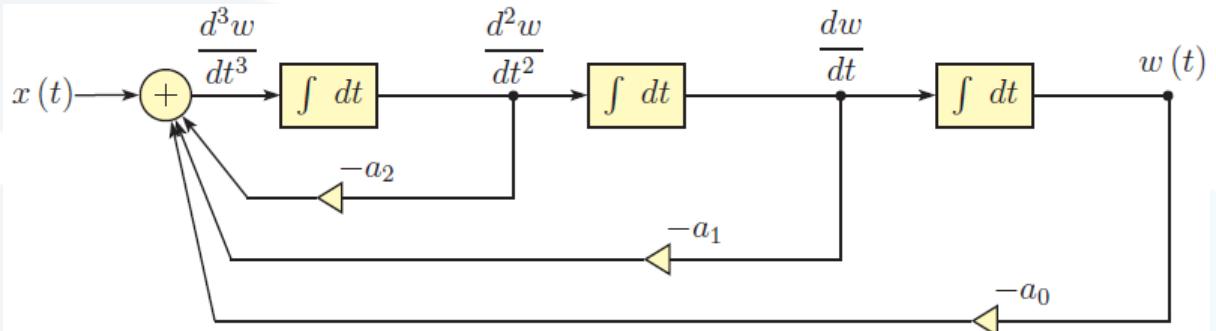
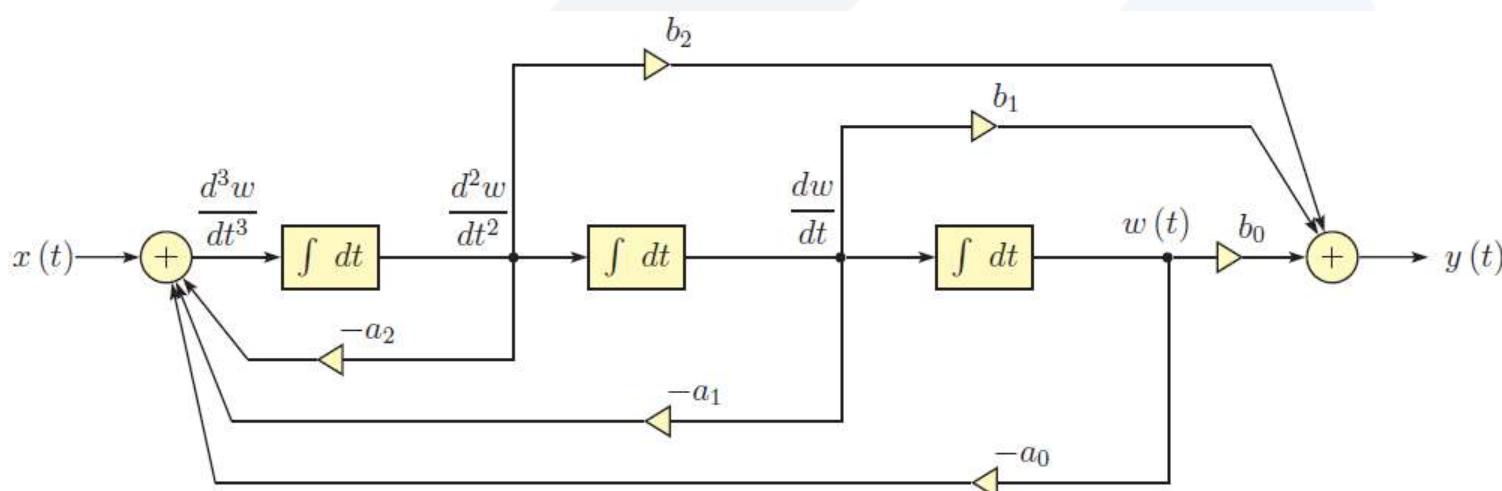
$$\frac{d^3y}{dt^3} + a_2 \frac{d^2y}{dt^2} + a_1 \frac{dy}{dt} + a_0 y = b_2 \frac{d^2x}{dt^2} + b_1 \frac{dx}{dt} + b_0 x$$

- We will introduce an intermediate variable $w(t)$

$$\frac{d^3w}{dt^3} + a_2 \frac{d^2w}{dt^2} + a_1 \frac{dw}{dt} + a_0 w = x \Rightarrow \frac{d^3w}{dt^3} = x - a_2 \frac{d^2w}{dt^2} - a_1 \frac{dw}{dt} - a_0 w$$

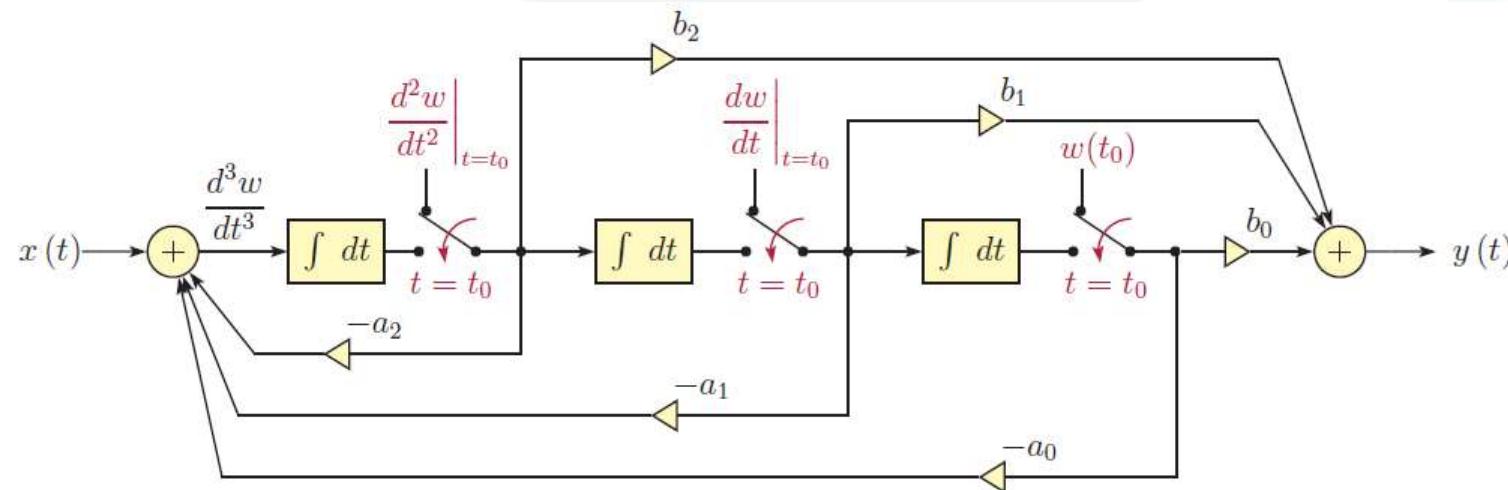
- The output signal $y(t)$ can be expressed in terms of $w(t)$ as:

$$y = b_2 \frac{d^2w}{dt^2} + b_1 \frac{dw}{dt} + b_0 w$$



Imposing initial conditions

- Initial values of $y(t)$ and its first $N - 1$ derivatives need to be converted to corresponding initial values of $w(t)$ and its first $N - 1$ derivatives.



- Example 17:** Block diagram for continuous-time system

$$\frac{d^3y}{dt^3} + 5\frac{d^2y}{dt^2} + 17\frac{dy}{dt} + 13y = x + 2\frac{dx}{dt} \quad x(t) = \cos(20\pi t), y(0) = 1, \frac{dy}{dt}\Big|_{t=0} = 2, \frac{d^2y}{dt^2}\Big|_{t=0} = -4$$

$$\frac{d^3w}{dt^3} + 5 \frac{d^2w}{dt^2} + 17 \frac{dw}{dt} + 13w = x, \quad y = w + 2 \frac{dw}{dt}$$

$$y(0) = 1 = w(0) + 2 \frac{dw}{dt} \Big|_{t=0}, \quad \frac{dy}{dt} \Big|_{t=0} = 2 = \frac{dw}{dt} \Big|_{t=0} + 2 \frac{d^2w}{dt^2} \Big|_{t=0},$$

$$\frac{d^2y}{dt^2} \Big|_{t=0} = -4 = \frac{d^2w}{dt^2} \Big|_{t=0} + 2 \frac{d^3w}{dt^3} \Big|_{t=0}, \quad \frac{d^3w}{dt^3} \Big|_{t=0} = x(0) - 5 \frac{d^2w}{dt^2} \Big|_{t=0} - 17 \frac{dw}{dt} \Big|_{t=0} - 13w(0)$$

$x(0) = 1$. Solving Equations, the initial values of integrator outputs are:

$$w(0) = \frac{-71}{45}, \quad \frac{dw}{dt} \Big|_{t=0} = \frac{58}{45},$$

$$\frac{d^2w}{dt^2} \Big|_{t=0} = \frac{16}{45}$$

