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Chapter 3
Analyzing Discrete Time Systems in the Time Domain
1. Linearity and Time Invariance
2. Difference Equations for Discrete-Time Systems
3.  Constant-Coefficient Linear Difference Equations
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6. Block Diagram Representation of Discrete-Time Systems
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Introduction

* |In general, a discrete-time (DT) system is a mathematical formula, method or
algorithm that defines a cause-effect relationship between a set of discrete-
time input signals and a set of discrete-time output signals.

z[n] y[n]

z[n| —— System ——— y|n]
n n

» The input signal is a{n], and the output signal is gy[n]. The system may be
represented by y[n] = T{2[n]}, where T{.} = Sys{.} denoted the transformation
that defines the system in the time domain.

= A very simple example is a system that simply multiplies its input signal by a
constant gain factor K to yield an output signal y[n] = Ka]n],
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= Or one that delays its input signal by'm samples y[n] = 2[n — m],
= Or one that produces an output signal proportional to the square of the input

signal y[n] = K[2[n]]%.

1. Linearity and Time Invariance

Linearity in discrete-time systems

= A system T'is linear, if for all functions z; and z, and all constants «; and «,,

¥y

zy[n] >

¥ T

xa[n] >

xy[n] ——

Sys{.}

— y[n] =

Ia :r'}.] _—

Sys{.}

¥

Svs{.}

o

4@— y[n]
| = 1

* Linear systems are much easier to design and analyze than nonlinear systems.
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= Example 1: Testing linearity of discfﬁgtdg'[time systems
a. y[n] = 3a{n] + 2dn - 1] b. y[n] = 32n] + 22{n — 1]2fn + 1] X
c. y[n] = a"dn] V
= A direct consequence of the linearity property is that, for linear systems,
T{0} = O (zero-in/zero-out property).
Time Invariance in discrete-time systems

= A system T'is said to be time invariant if, for every function x and every integer
constant £, the following condition holds:

Rafnl} = yln] = Tain - K} = yln — ]

» Example 2: Testing time invariance of discrete-time systems
a. y[n] = y[n — 1]+ 3n] V b. y[n] = an]y[n—11 Vv  c. y[n]=nadn-1] X
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z[n| o y[n]
‘ ‘ H ‘ ‘ H‘ z[n] ——| System |—— y|n]
- n n
r[n—k| yn—k]

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ zn—k| —| System |— y[n—k]
— n n
k k

2. Difference Equations for Discrete-Time Systems
= One method of representing the relationship established by a system between
its input and output signals is a difference equation (DE).

= A DT systems can be modeled with difference equations involving current,
past, or future samples of input and output signals.
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= Example 4: Moving-average filter
A length-N moving average filter is a simple system that produces an output

equal to the arithmetic average of the most recent N samples of the input signal.

Jn] = on]+a[n —1]+ N tafn—(N-1] _ %z;\; o — k]

» Moving average filters are used in to smooth the variations in a signal.

Input signal

t 1 l”“,ll]

|

= The degree of smoothing is dependent on N, the size of the window.

l

n—N+1 "

il
| |
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= Example 5: Length-4 moving-average filter

y[n] =+ (z[n] + 2[n — 1] + 2[n — 2] + 2[n — 3])

[nput signal

-

I

!

Output signal

.—

z(n — 3

Fm———————|———————

L J S

l
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» Example 6: Exponential smoother
An exponential smoother which employs a difference equation with feedback.
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= The current output sample is computed as a mix of the current input sample
and the previous output sample through the equation:
ylnl = (1 - @) yln — 1] + aan]
» The parameter 0 < a < 1 is a constant, it controls the degree of smoothing.

= Figure below illustrates the application of the linear exponential smoother to
the 2003 Dow Jones Industrial Average data for «=0.1 and a=0.2.

1 RN T T T T T | 10N T T T T T
—— M3 data rin 2003 data xin
e ]
. F B il k P
oo = — — — Qutput yain| with o« = 0.1 Sl toopg L — — — Output g |n| with o = 0.2 ]
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£ "' ™, e g § il
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3. Constant-Coefficient Linear Difference Equations
= In general, DTLTI systems can be modeled with linear difference equations

that have constant coefficients in the form: Z;V:Oaky[n — k] = Zfiobkx[n — k].

* The order of the DE (= the order of the system it represents) = max(N, M).

* |n general, a constant-coefficient linear DE has a family of solutions. To find a
unique solution for n 2 n,, the initial values y[ny — 1], ..., y[ny — V] are needed.

N M
= The linear difference equation ) a,y[n — k] =) baln — k]
k=0 k=0
represents a linear system provided that all initial conditions are equal to zero:

ylng — k] =0 for k=1,..., N. And represents a time invariance system.
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Solution of the general linear difference equation

Zero-input response and Zero-states response

= Considering the input signal z{n] and the ICs two different inputs, using
superposition we have that the complete response of the DE is composed of a
zero-input response, due to the ICs when the input 2{n] is zero, and the zero-
state response due to the input 2fn] with zero ICs.

= Zero-state response Is linear with respect to the input. While zero-input
response is linear with respect to the initial conditions.

Zero-input response y,_[n]
= The zero-input response y_[n] Is the output of the system when the external
input z{n] is zero. It is produced by the system because of the initial conditions.
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Zero-input response y_[n] satisfies: Ziv:oakyzz'[” —-k]=0

Determine the characteristic equation ZszoakZ_k = 0 of the system by replacing
delayed versions of the output signal y_[n] the corresponding negative powers
of the complex variable z: y_[n — k] = 27

Let the roots of the characteristic polynomial Ziv:oakz‘k be 24, 25, ., 2y

N

= Ifall z, are of order 1, y.[n] = ZH .2 C, could be determined by the ICs

. . k-1
= |f aroot z is repeated ktimes, y,,[n] = ¢z, +conz +---+cyn" 2z + other terms

= Ifaroot z , is complex-valued z = re™, 2, = e ™,
y_[n] = d;r"cos(QQn) + d,r"sin(QQ;n) + other terms
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= Example 6: Zero-input response of second-order system
yn]-2yln -1+ 5yn—-2]=0 y[-11=19 and y[-2] = 53
Determine the zero-input response of this system for n > 0.
2

C-prtt=(-3)z-§)=0=>y,ln]l=c,;(3) +cp(§), forn =0
y-11=19,and y[-2] =53 =>c¢,,=2,¢c,,=5
y.[n] =2 (%)n un]+5 (%)n u[n]
» Example 7: Zero-input response of second-order system
a. y[n]-14y[n—-1+0.85y[n-2]=0 yl-1]=5and y[-2] =7
b. y[n]—1.6y[n —1]+0.64y[n—-2]=0  y[-1]1=2and y[-2] = -3
Determine the zero-input response of this system for n > 0.
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a. The characteristic equation is
2*-142+0.85=0, z,=0.7£0.65=0.922"""
y_[n] = d,0.922"cos(0.7086n) + d,0.922"sin(0.7086n), forn >0
y-11=5and y[-2] =7 = d;,=1.05 and d, =-5.8583
y_[n] =1.05(0.922)"cos(0.7086n)u[n] — 5.8583(0.922)"sin(0.7086n ) u[ n]

vl

1 1 ] ] ] ] b
10 15 20 25 30 35 40 45 all

b. The characteristic equation is z* = 1.6z + 0.64 =0, 2, = 0.8
y[n] = ¢,(0.8)" + ¢,n(0.8)", forn >0
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y-11=2and y[-2] =-3 = ¢, =

Py

'CIJLI_O_”

y. [n]=25. 12(0 8)" u[n] + 3. 52n(0 8) u[n]

5.12 and ¢y, =3.92

il

Y. [n]

H”Hmmmm.mmm

0

Zero-state response vy, [n]

10

20 25 a0

40

al

mn

= The zero-state response y_[n] is the output of the system to the external input

signal z(?). The initial conditions of the system are assumed to be zero.

N n
» Ifall z are of order 1, ¥.,[n]= D cqa; +y,[n],

c,;. 1S determined by the ICs
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= The complete solution = Zero-input response + Zero-state response
k

. J/

zero—input response  zero—state response

= Example 9: Response of a second-order system
The DLTI system described by the difference equation:
yln] + 3yln — 1] + 2y[n — 2] = afn]

has input 2[n] = 2"u[n] and initial conditions y[-1] = 0 and ¢[-2] = ¥2. Determine

the zero-input response and the zero-state response of this system.
Z+324+2=2+D)(z+2)=0=y [n]=c (-1)"+c,(-2)", forn >0
y.[-11=0,and y [-2]="2=c,=1,¢c,=-2
y{nl=(-1)"-2(-2)",forn >0
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yln]=k2" = k=1/3 y.lnl= Ca( = D"+, n(—2)" + 52", forn >0
Yol ==y l-2]=0 )

¥,,0] = =3y, [ 1] -2y, [ - 2]+ 2[0] =1 = {2; _ I
Yol = =3y,[0] =2y, [ - 1]+ 21] = -1 -

Y lnl=—3(-D"+(-2)"+12" forn >0

1
3

The complete solution:
ynl =y [nl+y,[nl= (- D" —2(- 2)71 1+ (-D"+(-2)"+32",forn >0

. '
zero—input response zero-state response

Linearity properties of zero-input and zero-state response
= Zero-state response is linear with respect to the input.
= Zero-input response is linear with respect to the initial state.
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Homogeneous solution (natural responéé) & particular solution (forced response)
yln] = y,[n] + y,[n].
Homogeneous solution y,(t) satisfies Zivzoaky[n —k]=0

= y,[n] depends on the structure of the system as well as the initial state of the
system.

= For a stable system, y,[n] tends to gradually disappear in time.

= y,[n] is due to the input signal z[n] being applied to the system. It is referred to
as the particular solution of the difference equation.

. yp[n] depends on the input signal 2[{n] and the internal structure of the system,
but it does not depend on the initial state of the system.
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= The particular solution y,[n] represents any solution of the DE for the given

iInput.

= A particular solution is usually obtained by assuming an output of the same

form as the input.

Input signal Particular solution
" knt+k nt+ . kn+ k
(Constant input is a special case with k= 0)
ka®" , ais not the characteristic value
an kina® + kya®", ais the characteristic value with order 1
knfad™ + k  nfla + .. kna + ka, ais the
characteristic value with order &
cos(2n) or sin(2n) k,cos(Qn) + k,Sin(Qn)
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» Example 8: Find the total response of the exp. smoother y[n] = (1-a)y[n — 1]
+ aa]n] when the input is 2{n] = 20c0s(0.27zn). Use o= 0.1 and y[-1] = 2.5.

The homogeneous solution is in the form: y,[n] = ¢(1 — )"

The form of the particular solution is: y [n] = k,cos(0.27n) + k,sin(0.27n)

= aAll — (1 - a)cos(0.27)] - a A(1 — a)sin(0.27)
1-2(1-a)cos(0.27) + (1 — @) R 2(1 — a)cos(0.27) + (1 — )’

Using the specified parameter values: &, = 1.537 and £, =2.991

y[n] = ¢(0.9)*+ 1.537c0s(0.27zn) + 2.991sin(0.27zn), y[-1]=2.5 > ¢=2.713

y[n] =2.7129(0.9)" + 1.5371cos(0.27zn) + 2.9907sin(0.27n), forn = 0

y[n] consists of two components. The first term is the transient response:
y[n] =2.7129(0.9)", which is due to the initial state of the system.
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=

The remaining terms represent the steady-state response of the system:
y.[n] =1.9371cos(0. 27m) + 2. 9907S|n(0 27n)

il ]

1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 a0
Index n
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4. Impulse Response and Convolution
Discrete-time impulse response

* The impulse response h[n] of an DTLTI system is the zero-state response of

the system when a unit impulse Jn] is applied at the input.
N M
D ahln =k = " b6[n -k
subject to initial conditions A[-1] = A[-2] =--=h[-N] =0
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4. Impulse Response and Convolution
Discrete-time impulse response

* The impulse response h[n] of an DTLTI system is the zero-state response of
the system when a unit impulse Jn] is applied at the input.

N M
D ahln =k = " b6[n -k
Convolution operation for DTLTI systems
= The (DT) convolution of zand h, denoted x * h, is defined as the function:

o0

dn]*h{n] = > a[k]lh[n — k]

Properties of Convolution k=—o0

» Commutative. That is, for any two functions zand h, x * h=h * .
» Associative. That is, for any functions z, h,, and h,, (x * h,) * hy = x * (h, * hy).
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= Distributive. That is, for any functions z, 2, and h,, = * (h, + h)) = * h, + x * h,.

» Forany function z, 2[n]*d[n]= Z t[k]o[n — k] = a[n]

k=—00

= Moreover, ois the convolutional identity. That is, for any function z, z * 6= x.

Finding impulse response of a DTLTI system

» The response h of a system 7T to the input ¢ is called the impulse response of
the system.

* For any LTI system with input z, output y, and impulse response h: y = x * h.
= ALTI system is completely characterized by its impulse response.

o[ n] h[n]

—— LTl system —>—
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Step Response of a DTLTI system
* The response s of a system 7' to the input u is called the step response of the
system. > >

dnl= D> uklh[n —k] =D u[k]h[n — k]

k=—00 k=0

* The impulse response h and step response s of a LTI system are related as:
h[n] = s[n] — s[n —1]

» Example 10: Impulse response of moving average filters

N-1
Length- N moving average filter y[n] = Z [n — k]

haln] = T{nly = - Y. Oln — H]
k=0
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~, n=0-,N-1
0, otherwise

hyln] = {

hyln] = +(u[n] —u[n — NJ)

= Example 11: Impulse response of exponential smoother
Find the impulse response of the exponential smoother with y[-1] = 0 using

step response sof a LTI system.
yln] = (1 =) ylnl=k=k=1

yln] = yln] + yInl = (1 — )" + 1
-11=0=>c=—(1- )

qn]=1-(1-a)*!,forn=0

hn]

0.1+

0.05 -

| h[n], for o= 0.1

}H"Hﬂﬂnmnm,,,,......m......m.,

In] =[1-(1 - &)""u[n] d | j .
hn] = sn] — sln—11= (1 — &)"u[n] : Y hdetn o .
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= Example 12: A simple discrete-time convolution example
A discrete-time system is described through the impulse response

h[n] = {4, 3, 2, 1}
t

Use the convolution operation to find the response of the system to the input
signal 2[n] = {-3, 7, 4}
T

k] ={-3, 7, 4} K-k ={1, 2, 3, 4} hn—K={1, 2, 3, 4}
t ’ t 0 t
min(2,n)
vinl= ) alklhln-k], forn=0
k=max(0,n—3)
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yl0] = kz(:)fv[k] h[0 = k] = 2[0]A[0] = (= 3)(4) = —12

y[1] = le z[ k][l — k] = z[O]A[1] + z[1]A[0] = 19
Y[2] = ZZ: x[k]_h[Z — k] = 2[0)R[2] + z[1]A[1] + 2[2]R[0] =

;[?33 = i z[ k)3 — k] = 2[0]A[3] + 2[1]A[2] + z[2]A[1] =

k=0
y[4] = kZQ:x[k] h[4 — k] = 2[1]h[3] + z[2]A[2] = 15
=1
y[5] = éaz[k] R[5 — k] = 2[2]h|3] = 4 y[n] = {—‘IT2, 19, 31, 23, 15, 4}
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Total Response of DTLTI system

ynl=y.lnl+y,ln Z Cpty, + a[n]* hin]

zZero— state

ze'r’o—mput

Eigenfunctions of DTLTI system

» Complex geometric sequences are eigenfunctions of DTLTI systems.

21—l [11] H(z)z"
yln] = (h=x)[n]= Y hk]z"™" = Z = H(2)z"
k=—0 k=—o0

= We refer to H as the transfer function of the system.
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Causality and Stability in Discrete-Timeﬁ'Systems

» For DTLTI systems the causality property can be related to the impulse
response of the system h[n] =0 for all n < O:

yin]=h{n]*a{n] =Y  hklaln—k]= Z::Oh[k]x[n — k]

0 0]

k=—00

» For a DTLTI system to be stable, its impulse response must be absolute
summable:

Z::_Oo|h[k]| < o0

= Example 13: Stability of a length-2 moving-average filter

Comment on the stability of the length-2 moving-average filter described by
the difference equation y[n] = 2[n] + 5 z[n — 1]
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ly[n] = |3 2[n] + Lafn - 1]|£ Lla[n]| + L |2[n — 1]

Since we assume |[n]| < B, for all n, |y[n] < 1B, + 1B, = B,

» For a causal DTLTI system to be stable, the magnitudes of all roots of the
characteristic polynomial must be less than unity.

= |f a circle is drawn on the complex plane with its center at the origin and its
radius equal to unity, all roots of the characteristic polynomial must lie inside
the circle for the corresponding causal DTLTI system to be stable.
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y[n]z%(—l)n—(—2)7i+ +2" ,forn >0

g
natural response forced response

Causality in Discrete-Time Systems

= A system is said to be causal if the current value of the output signal depends
only on current and past values of the input signal, but not on its future values.
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» Example 3: causal and non causal systems
y[n] = y[n— 1] + 2fn] — 32[n— 1] is causal

y[n] = y[n— 1]+ afn] — 3fn + 1] is non causal
» Causal systems can be implemented in real-time processing mode.

Stability in Discrete-Time Systems

= A system is said to be stable in the bounded-input bounded-output (BIBO)
sense if any bounded input signal is produce a bounded output signal.

= An input signal 2[n] is said to be bounded if an upper bound B, exists such
that 2[n] < B, < « for all values of the integer index n.

= For stability of a discrete-time system: a[n] < B, <o = y[n] < B, < .
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5. Block Diagram Representation of Discrete-Time Systems

= Block diagrams for DT systems are constructed using three types of
components, namely multiplication of a signal by a constant gain factor,

addition of two signals, and time shift of a signal.
K

w(n] >—s K w(n] wn] ——{ D —— wln —1]

wi [n] —’/"I_-\ » wi[n] +woln| + ...+ wr[n]
L{'g[.*}] f
wr,[n]

* Finding a block diagram from a DE is best explained with an example.
yin] + ay[n —1] + ayyln — 2] + azy[n — 3] = byaln] + biafn —1] + byafn — 2]
We will introduce an intermediate variable w[n]:
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>y

dsoln
ot
w[n] + aqw[n —1] + a,w[n — 2] + agw[n — 3] = 2[n]
w(n| wln — 1] wln — 2] wln — 3]
r[n|—s- D - D D
= The output signal y[n] can be G »
expressed in terms of w[n] as: < s
yln] = bgwln] + byw[n —1] + byw[n — 2]
bo
: ——
w(n] g hbz /
v wln — 2]  upe3
2[n]—(+) D D D .
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Imposing initial conditions
» [|nitial values of y[-1], y[-2], and 1[-3], need to be converted to corresponding
initial values of w[-1], w[-2], and w[-3] for the previous third-order DE. The

outputs of the three delay elements should be set equal to these values.

6. Impulse Response and Convolution
Convolution operation for DTLTI systems
* The (DT) convolution of zand h, denoted z * h, is defined as the function:

o0

dn]*h{n] = Y a[k]lh[n — k]

Properties of Convolution k=—o0
» Commutative. That is, for any two functions zand h, x * h=h * .
= Associative. That is, for any functions z, h,, and h,, (z * h;) * h, =z * (h, * hy).
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