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Chapter 5
Fourier Analysis for Discrete Time Sighals and Systems

1 Analysis of Periodic Discrete-Time Signals
2 Analysis of Non-Periodic Discrete-Time Signals
3 Transfer Function Concept
4 DTLTI Systems with Periodic Input Signals

5 DTLTI Systems with Non Periodic Input Signals
6 Discrete Fourier Transform
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1. Analysis of Periodic Discrete-Time Signals
= A continuous-time periodic signal of period can be represented as a

trigonometric/Exponential Fourier series (CTFS).

= A discrete-time periodic signal can be represented by a discrete-time Fourier
series (DTFS) using a parallel development.

* One fundamental difference between DTFS and its CT counterpart, the
exponential Fourier series, is regarding the number of series terms needed.

» A CT periodic signal may have an infinite range of frequencies, and therefore
may require an infinite number of harmonically related basis functions.

= We will see that a discrete-time signal with a period of N samples will require
at most N basis functions.
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Discrete-Time Fourier Series (DTFS)
= Consider a discrete-time signal Z[n] periodic with a period of N samples, that

is, i[n] = An+ N forall n. #n] =Y &alnl=>  Ge™™"
Two important questions need to be answered:

1. How should the angular frequencies Q, be chosen?
2. How many basis functions are needed?

= Since the period of 7{n] is N, the basis functions must also be periodic with V.

k k I .
:E[n] A zk Ekej(Qﬂ'/N)kn

27/ N)(k+N ~ N-1 . j@z/N)k
P, vn] = e/ kN ¢.[n] = we only need Nterms i[n] = Zk:O cke]( N )
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= This summation is referred to as the discrete-time Fourier series (DTFS)
expansion of the periodic signal z[n].

» Example 1: DTFS for a discrete-time sinusoidal signal z[n] = cos(0.27n)

Q 1 T :
Q,=027rad, F, = 2—73 =10 periodic with a period of N=1/F, =10
f;[n] _ %6]’0.27771 4 %e—jO.Zﬂn _ %ej(Qﬂ/lO)n 4 %e—j(Qiz/IO)n — 51 _ 5_1 _ %

¢_1[7Z] _ 6—]’(271/10)71 _ 6—j(27z/10)nej2nn _ 6‘7'(187r/10)n _ ¢9[n]

[n] = 516 j@xhom 5961'(187#10)%
3 3, k=lork=9
C, = .

* 10, otherwise
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= Example 2: DTFS for a multi-tone signal z[n] = 1 + cos(0.27zn) + 2sin(0.37n)
(), =0.27rand Q, =0.3xrad =F, =0.1 and F, = 0.15 respectively.
The normalized fundamental frequency of z[n] is F, = 0.05 (N = 20).

Z[n] =1+ cos(0.27zn) + 2sin(0.37n)

fﬂ — 1+ %ej(27r/20)2n 4 %e—j(Qﬂ/20)2n 4 %ej(Qﬂ/20)3n _ %6—j(27z/20)3n
~r - ) i7/2
fn]=1+35@[n]+3d[n]+e/ " g[n]+e’" ¢4 n]
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Discrete-time Fourier series (DTFS):

N-1_ ;
~ _j@@7/N)kn
o Ck€ , alln

1. Synthesis equation: #[n] = )
2. Analysis equation: ¢, = %Zf}g F[n]e /7N )kn

» Example 3: DTFS representation of z[n] =n, n=0, 1, 2, 3,4 and Z[n] = Z[n + 5]

~ 4 5 —j(27/5)k —j27k/5 _jdnkl5 #[n]

5 5
+ 3 o I6Tk/5 4 o I87hI JLLMJE—MM
Gy =2, ¢ = 0.5+ j0.6882, ¢, = 0.5 + j0.1625, .

0
é, = —0.5 - j0.1625, &, = —0.5 — j0.6882
#An] =2+ (— 0.5+ j0.6882)e’"” + (- 0.5 + j0.1625)e’ """
+ (= 0.5 — j0.1625)e’""°+( - 0.5 — j0.6882)e’>""
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= Example 4: DTFS for discrete-time pulse train
in] = 1, —L<n<L
0, L<n<N-1L
where N> 2L + 1.

and 1I[n+ N]=1[n] ]

—L L N-L N
1 i /N _ 1 ICR/NILE _ ~jCr/N)L+1)k ’ oImkIN
% = N ne ] ¢ N 1 _ o J@R/NE o~ JThIN
_ sin(%’“(2L+1)) ar & (L =5) N=40 -

Ck o NSln(%k) 5 k = 0,1, N 1 .
:NZ ﬂk(QL-l-l))ej(Qﬂ/N)kn #; MT* 1_11'?;“'_.77.‘“.1-1._‘“;111.1 J‘I
k=0 NSln(ﬂk) -01h ].' . , | | | ].' L

N 5 10 15 20 25 20 %5
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Properties of the DTFS
Periodicity  Z[n] =2[n+ rN] all integer r = ¢, =¢,, ,, allinteger r

Linearity F[n]« 255z and  E[n]<

DTFS . _ ~ 3

DTFS , j
7Yk

= oI n] + o,z n]<

Symmetry of DTFS coefficients
i[n]: real, Im{Z[n]} =0 = ¢ =¢y_,, 4I[n]:imag, Re{i[n]} =0=¢, =—Cy_,

DTFS spectra of even and odd signals

» |f the real-valued signal 7[n] is an even function of index n, the resulting DTFS
spectrum ¢, is real-valued for all k.

i —n]=1[n], foralln = Im{c } =0, forall &
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» |f the real-valued signal 7[n] is an odd function of index n, the resulting DTFS
spectrum ¢, is purely imaginary for all £.

i —n]=—2[n],foralln = Re{¢} =0, forall k

Periodic convolution .
= The convolution of two DT signals: y[n] = a[n]*h[n] = > a[k]h[n — k]

k=—00

This summation fail to converge if both signals a[n] and h[n] are periodic with
periods N. For such a case, a periodic convolution operator can be defined as:

I~ N_]‘ ~
jln] = n]®h[n]= D Hklh[n k], alln
k=0
If both Z[n] and h[n] have the same period N = 7[n] also periodic with the

same period.
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= Example 5: Determine the periodic convolution §(n] = #[n] ® h[n]

h[n]

fnl={, 0,1,23,4 An]={-,3,3 =3, -2, —1, -
] = Zkzox[k]h[n ]

N

}Qz

~ ~

I@z

k=0
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0] = Zizo F[ k1] — k1= F[0]A[0] + Z[11A[4] + Z[2]A[3] + F[3]A[2] + F[4]A[1] = —
1] = 24 FK1h[1 = k] = Z[0]A[1] + Z[1]A[0] + Z[2]A[4] + F[31h[3] + [ 4]Ah[2] = 17

f21=Y dklh2-kl=-2, §@31=. akA3-kl=8, jl4l=.  dklh[4-k]=13
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" z[k]
: k
[0 h[l— K]
: k
y[n]
F13

—17+

finl={-, =2, 17, =2,8,13, -}
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The periodic convolution property ™
Let 7[n] and %[n] periodic with the same period #[n]« 255 ¢, and i[n]« 2554,

= &n] ® An] > NEd,

= Example 6: Periodic convolution
Refer to #[n], h[n] and 3[n] of Example 6. The DTFS coefficients of i[n] were
determined in Example 4. Find the DTFS coefficients of A[n] and 7[n]. Verify

the convolution property. = T -
Let Z[n], d[n] and &[n] [ 0] 2.0000+;0.0000 [ 0.0000+;0.0000 [ 0.0000+;0.0000
1 | —0.5000+;50.6882 | 1.5326—70.6433 | —1.6180+;6.8819
represent the DTFS coef. |, | 50001701625 | —0.0326—0.6604 | 0.6180+ ] 1.6246
of I n], h[n] and P[n] | 3 | —0.5000—j0.1625 | —0.0326+;0.6604 | 0.6180—;1.6246
—0.5000—30.6882 | 1.5326+70.6433 | —1.6180—;6.881¢
reSpectlvely. 4 0.5000—70.6882 1.53264-70.6433 1.6180—46.8819

It can easily be verified that: 2, =5¢,d, k=0, ..., 4
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2. Analysis of Non-Periodic Discrete-Time Signals
Discrete-time Fourier transform (DTFT)
1. Synthesis equation: (Inverse transform) z[n] = F {X(Q)} = ifﬁ X(Q) ™0

2. Analysis equation: (Forward transform) X(Q) = F{z[n]} = Z‘” x[n]e—an

n=—x

Existence of the DTFT

= A sufficient condition for the convergence of DTFT for the signal z2[n] be
absolute summable, Z"O l2[n]|< oo

= Alternatively, it is also sufficient for afn] to be square-summable: Z::_oo|~”3[”]|2 < o0

DTFT of some signals
» Example 7: DTFT of right-sided exponential signal

Fourier Analysis for Discrete Time Signals and Systems https://manara.edu.sy/ 2024-2025 15/33


https://manara.edu.sy/

>y

dsola
ojtioll ]
0 1513[77,] = a'u[n], |05| <1 1
X(Q) =) a"e’" = .
( ) nZ:O 1 — ae—JQ 0 "
1 4 asmn(Q)
1X(Q)| = 2 . £X(Q)=—tan™" — 0
\/1 + a” — 2a cos(L2) @ CO8

0.6
0.4
02

— -0z

One period 1 —04
of DTFT
1] L i
—3m —2 T 0

—0.6

0.5 - et
|
|
|

- 1 - |J.'1
I
I
|
T

2m am —3r — 2 w L] i 2% I

» Example 8: DTFT of unit-impulse signal
F{o[nlt =Y~ d[nle’™ =1

N =—00
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= Example 9: DTFT for discrete-time pulse

QL —jO(L+1) . (0
2[n] = L Lemsi X(Q) = ZL 1) oI _ e’ —e ]. _ SlIl( 5 (2L + 1))
0, otherwise n=-L 1 _ 0 sin (2)
12 , . . . . 12 . . T
10 X () (for L=3) : 10 X (@) (for L= -H ) o
z z fllﬂll'l l'lllﬂlllll
4 4 ,'I I'. II|I '|II

|
e

- [

: : ' Q (rad)
T D 3

—2 -7 0 T D

» Example 10: Inverse DTFT of rectangular spectrum defined in the range

, QO <Q<Q =
—7< Q< by X[Q] = 0 octherwise ‘

0

I

X(Q) must be 2z-periodic: X(Q) = X(Q +27) ./ . LT
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xz[n] (for F. =1/9) -
T T T T T T 1 QC Q Sin Q n
| afn)= L[ e - S
E 27 -0 n
3 = 2F sinc(2F.n)
—0.1 ' I | !
—20 -1 —10 -5 0 5 10 15 20
Index

= Example 11: Inverse DTFT of the unit-impulse function
Find the signal of which the DTFT is X(Q2)

= Q) intherange - 7< Q < .

X(Q) must be 2z-periodic: X(Q) =Y~ §(Q-2zm)
1 " 1 ) F)
:Ein] %j S5(Q) e™"dQ = 5 all n ‘1 r ‘1 r ‘1
< F
272- Z = 005(9 27rm) —4r -2 | 2 drr .
https://manara.edu.sy/ 2024-2025 18/33
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Properties of the DTFT
Periodicity X(Q + 271) = X(Q) for all integer r
Linearity z,[n]«+>X,(Q) and z,[n]<— X,(Q)
= oz n]+ o,z n] > o, X (Q) + o, X, ()
Time shifting 2[n] <L X(Q) = 2[n — m]<Lt—> X(Q)e
Time reversal and Conjugation x[n]<L>X(Q) = 7] — n]<L>X( - Q)

2[n] I X(Q) = 2'[n] <> X*(- Q)
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Symmetry of the DTFT
2{n]: Real, Im{2[n]} = 0 implies that X (QQ) = X(-Q).

2{n]: Imag, Re {[n]} = implies that X (Q) = -X(-Q).

DTFST of even and odd signals

» |f the real-valued signal 2[n] is an even function of time, the resulting DTFT is
real-valued X(Q) for all Q.

a[-n] = 2[n] , for all n implies that Im{X(Q2)} =0, all Q

= |If the real-valued signal z[{n] is an odd function of time, the resulting DTFT
X(Q) is purely imaginary.
a[—-n] = —an] , for all n implies that Re{X(Q)} =0, all Q

Frequency shifting 2[n]«2>X(Q) = an]e’" <> X(Q-Q,)
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Modulation property n]«tsX(Q) =
7[n]cos(Q,n) «—— L[ X(Q - Q) + X(Q + Q)]

2 n]sin(Qt) «—— 1| X(Q - Q)e ™ + X(Q + Q,)e’™?
0 2 0 0

Convolution property :z:Jn](L)Xl(Q) and a:Q[n]<L>X2(Q)
= z[n]* z,[n]<«—— X,(Q)X,(Q)

Differentiation in the frequency domain x[n](—T—>X(Q) = nmx[n]<—T—>Jm ddi()g))

= Example 12: Convolution using the DTFT
h[n] = (2/3)"u[n] and an] = (3/4)"u[n]
Determine the convolution y[n] = h[n] * 2{n] using the DTFT
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1 1
H(Q) = _2,° X(Q) = v
-8 9
Y(Q) = H(Q)X(Q) = I MmO y[n] = —8(2/3)"u[n] + 9(3/4)"u[n]
3 4

Multiplication of two signals z,[n]<«— X,(Q) and z,[n]<«— X,(Q)
= z,[n]z,[n] J—>% j’; X, (D) X,(Q - 7)dr

Applying DTFT to periodic signals
= Example 13: DTFT of complex exponential signal X (9)

on] =", —z<Q <=7 ‘ I rﬁ l r |

A 91+ Qg ', 24+ 4+

F{l} =2z = S(Q—-2xm)= F(e™")=27) ~  5Q-Qy—27m)
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» Example 14: DTFT of sinusoidal signal
z[n] = cos(Qn), —-7<Q,<7x

F{l} = ZEZ::_OO o(Q—-2rm) =

Fleos(Qm)t =7).  S(Q-Q)—2zm)+ 7y, 5(Q+Q,—27m)

Let )_((Q) represent the part of the transform in the range -z < Q, < .
X(Q) = 16(Q - Q,) + 15(Q + Q)

The DTFT can now be expressed as X(Q2) = ZOOZ OO)_((Q —271m)

m —
X (Q) X ()

A8 N N A B

- =gl g

. _ w Vo1
* In general for a periodic DT signal Z[n]: 2[n] = Zk:o Ckej(Zn/N)kn
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oo 00 N-1
X(Q) = Z [n] e Z { Ckeﬂ(Qﬂ/N)kn} -jQn _ Z C/{ Z pI@UN)En, an}
n=—00 n=—owo | k=0 .

The expression in square brackets is the DTFT of the signal ¢/*/ ")

271 N = Q),is the fundamental angular frequency for the periodic signal Z[n]:

- (27 n_—71Qn - 27k -
Z g/ Gk =iemn Qﬂmzooé'(ﬂ ~ v Qﬂmj = 2777712_:0O o(Q — k€ —27rm)

n=—00

o0

X(Q) = 27sz &, Y. 8(Q—kQy —27m)
k=0 o0

m=—

The part of the transform in the range 0 < Q < 2rxis found by setting m =0

X(Q) = zysz O(Q-kQ)  X(Q)= i X(Q-27m)
k=0 m=—0o0
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= Example 15: DTFT of the unit step sequence u[n]

1 %, n =0 0
u[n] = afn]+yln, alnl=2oolnl =1 % "7 0 X@=7Y 8@ -27h)
99
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n = yln — 11 = ln] = Y@L - =12 V(@) = ——;
— €
Fl{u[n]} = 7[2:2_00 S(Q - 27k) + 1 1_].9
—e

» Example 16: DTFT of an Accumulator System
olnl*uln] =) " alkluln—k]=Y afk]
T{ZZ’:_OO x[k]} = F{a[n]} Flu[n]} = X(Q)(yzz::_w 5(Q = 27k) + — j

1—e
Because of 27 periodicity, X(0) = X(2zk). Moreover, X(Q)AQ — 27zk) =
X(27k) AQ - 27k) = X(0)XQ - 27k). Hence,

F {Zzz_w x[k]} =X 5@~ 27k) +

1
1—e

— X(©)
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Parseval’s theorem

» For a periodic power signal Z[n] with period N and DTFS coefficients
{¢,, k=0, ..., N-1} N il
B, = Wznzo Zn]l” = Zk:O ]
» For a non-periodic energy signal 2fn] with DTFT, X(Q):
B, =" lan =& [X@F dQ

» Example 17: DTFT of an Accumulator System
Find the energy of an] = sinc(QQ_.n), assuming Q_ < x

2
F{sinc(Q n)} = erect (%j = F_ = ifﬂ {Ql rect (%ﬂ dQ = Ql

C
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3. Transfer Function Concept
* |n time-domain analysis of systems two distinct descriptions for DTLTI systems:
1. A linear constant-coefficient difference equation that describes the
relationship between the input and the output signals.
2. An impulse response which can be used with the convolution operation for
determining the response of the system to an arbitrary input signal.
= The concept of Transfer function will be introduced as the third method for
describing the characteristics of a system.

H(Q) = F{h[n]} =D~ h{n]e ™"

—Q0

The transfer function concept is valid for LTI systems only.
= In general, H(Q) is a complex function of Q, H(Q) = |H(Q)|e’*?.
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Obtaining the transfer function from the difference equation

y[n] = h[n] * 2[n] <L Y(Q) = HOQ)X(Q) = H(Q) = f(ig))
yin —ml« Lo e Y(Q), m=0,1, - a[n—m]<Lse ™ X(Q), m=0,1, -

» Example 18: Transfer function for length-N moving average filter

1 N-1
yin] =+ > aln — k]
k=0

1 < —7Qk 1 1S _]Qk
Y(Q) =+ Z X(©@ = HQ) = Z

SIH(QN/Q) ]Q(N 1)/2
Nsin(€2/ 2)

H(Q) =
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= i 4 /2 4 0 1 ir /4 i /A ! 0 374
0 (rad) 01 [‘:‘;HI]

4. DTLTI Systems with Periodic Input Signals

N-1 '
~ y ~ 927/ N)kn
on] = Zkzo k€

Response of a DTLTI system to complex exponential signal

P[n] = ™"

ylnl = hlnl=dnl=> " HKFEHn-k] =D, hk]e™" =B plk]e

k=—00

j][n] = eonnH(QO) — |H(QO)|ej[Qon+®(Qo)]
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= Thatis, ¢?tis an eigenfunction of a LTI system for the eigenvalue H(Q).

Response of a DTLTI system to sinusoidal signal
z[n] = cos(2 n)
F(t) = cos(Qn) = L&’ + L5
fin] = %e]QO”H(QO) +1le JQo”H( Q)
in] = %GJQON |H(QO)|ej®(QO) n %e—jﬂon |H( _ Q0)|6j®(_QO)
If the imp. response h[n] is real-valued: |H( - Q)| = [H(Q,)|, O( - Q,) = —-60(Q,)
jgin] = L[H(Q)| e 4 LIH(Q)|e O = | H(Q,)|cos(Qn + B(Q,))

» Example 19: Steady-state response of DTLTI system to sinusoidal input
y[n] — 0.9¢y[n — 1] + 0.36y[n — 2] = 2fn] — 0.22[n — 1]
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deol o
§)liall
Find the response of the system to the sinusoidal input signal () = 5cos(£2)
Y(Q) 1-0.2e77
H(Q) = = . .
=@ T 10907 1 0360
. —j7/5 ,
H(x/5) = 1 - 0.2 = 1.8890 — j0.6133 = 1.9861¢ 74139

1—0.9e77" 4 0.36¢ 727"
The steady-state response of the system to the specified input signal 7[n] is:

gln] = 5|H(x/5)|cos(zn/5 + O(7/5)) = 9.9305 cos(zn/5 — 0.3139)

|H (12} 4H ()
- I3

1
i
o
=
|
|
I
[ |
x4

i I —gfa L i a5 i == [t ! I | I
1] m/d w2 dr /4 T —7 -3/ 4 -2 -4 L /4 w2 a4
2 {rad) 1 (rad)

Fourier Analysis for Discrete Time Signals and Systems https://manara.edu.sy/ 2024-2025 32/33


https://manara.edu.sy/

P ‘i

ﬂle_clJl
Response of a DTLTI system to periodic input signal

N-1
~ . ~ 12n/N)kn
T[n] = Zk o Cre

N-1

. N-1 |
T{#[n]} = T{Z Ekeﬂ?“/mk"} = > & T /T {an]) = Z G, (2]@’{) RNk
k=0

5. DTLTI Systems with Non Periodic Input Signals
For a non-periodic signal a[n] as input to a DTLTI system. The output of the
system ¢[n] is given by: y[n] = A[n] * 2[n]
» |Let us assume that The system is stable ensuring that H(Q)) converges, and
the DTFT of the input signal also converges.
Y(Q) = HQ)X(Q) Y(Q)| = |HOQ||X(©Q)|, £Y(Q)=L£X(Q)+06(Q)
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