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Chapter 5

Fourier Analysis for Discrete Time Signals and Systems

1 Analysis of Periodic Discrete-Time Signals

2 Analysis of Non-Periodic Discrete-Time Signals

3 Transfer Function Concept

4 DTLTI Systems with Periodic Input Signals

5 DTLTI Systems with Non Periodic Input Signals

6 Discrete Fourier Transform
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1. Analysis of Periodic Discrete-Time Signals

▪ A continuous-time periodic signal of period can be represented as a 

trigonometric/Exponential Fourier series (CTFS).

▪ A discrete-time periodic signal can be represented by a discrete-time Fourier 

series (DTFS) using a parallel development.

▪ One fundamental difference between DTFS and its CT counterpart, the 

exponential Fourier series, is regarding the number of series terms needed. 

▪ A CT periodic signal may have an infinite range of frequencies, and therefore 

may require an infinite number of harmonically related basis functions. 

▪ We will see that a discrete-time signal with a period of N samples will require 

at most N basis functions.
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▪ Consider a discrete-time signal ෤x[n] periodic with a period of N samples, that 

is, ෤x[n] = ෤x[n + N] for all n.

Discrete-Time Fourier Series (DTFS)

[ ] [ ] kj n
k k kk k

x n c n c e 
= = 

Two important questions need to be answered:

1. How should the angular frequencies Ωk be chosen?

2. How many basis functions are needed?

▪ Since the period of ෤x[n] is N, the basis functions must also be periodic with N.
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▪ Example 1: DTFS for a discrete-time sinusoidal signal [ ] cos( )0 2.x n n=

 rad, 0
0 0
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▪ This summation is referred to as the discrete-time Fourier series (DTFS) 

expansion of the periodic signal ෤x[n].
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▪ Example 2: DTFS for a multi-tone signal [ ] cos( ) sin( )1 0 2 2 0 3. .x n n n = + +

Ω1 = 0.2 and Ω2 = 0.3 rad ⇒F1 = 0.1 and F2 = 0.15 respectively.

The normalized fundamental frequency of ෤x[n] is F0 = 0.05 (N = 20).
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Discrete-time Fourier series (DTFS):

1. Synthesis equation:

2. Analysis equation:
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▪ Example 3: DTFS representation of ෤x[n] = n, n = 0, 1, 2, 3,4 and ෤x[n] = ෤x[n + 5]
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▪ Example 4: DTFS for discrete-time pulse train

where N  2L + 1. 
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Properties of the DTFS

[ ] [ ]

[ ] [ ]   

⎯⎯→ ⎯⎯→

 + ⎯⎯→ +

k k
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x n c x n d

x n x n c d
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and

Periodicity ෤x[n] = ෤x[n + rN] all integer r ⇒ ,  +=k k rNc c rall integer

Linearity

[ ]: , { [ ]} 0 , [ ]: , { [ ]} 0 
− −=  = =  = −k N k k N kx n x n c c x n x n c creal Im imag Re

Symmetry of DTFS coefficients

DTFS spectra of even and odd signals

[ ] [ ],   { } ,  − =  =kx n x n n c k0for all Im for all

▪ If the real-valued signal ෤x[n] is an even function of index n, the resulting DTFS 

spectrum ෤ck is real-valued for all k.
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Periodic convolution

▪ The convolution of two DT signals: [ ] [ ] [ ] [ ] [ ]
k

y n x n h n x k h n k


=−

=  = −

This summation fail to converge if both signals x[n] and h[n] are periodic with 

periods N. For such a case, a periodic convolution operator can be defined as:

[ ] [ ] [ ] [ ] [ ],  
−

=

=  = −
N

k

y n x n h n x k h n k n
1

0

all

[ ] [ ],   { } ,  − = −  =kx n x n n c k0for all Re for all

▪ If the real-valued signal ෤x[n] is an odd function of index n, the resulting DTFS 

spectrum ෤ck is purely imaginary for all k.

If both ෤x[n] and ෨h[n] have the same period N ⇒ ෤y[n] also periodic with the 

same period.
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▪ Example 5: Determine the periodic convolution [ ] [ ] [ ]y n x n h n= 
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[ ] { , , , , , , }2 17 2 8 13y n


= − − −
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The periodic convolution property

[ ] and [ ]

[ ] [ ]

k k

k k

DTFS DTFS

DTFS

x n c h n d

x n h n Nc d

⎯⎯⎯→ ⎯⎯⎯→

  ⎯⎯⎯→

Let ෤x[n] and ෨h[n] periodic with the same period

▪ Example 6: Periodic convolution

Refer to ෤x[n], ෨h[n] and ෤y[n] of Example 6. The DTFS coefficients of ෤x[n] were 

determined in Example 4. Find the DTFS coefficients of ෨h[n] and ෤y[n]. Verify 

the convolution property.

Let ෤c [n], ෨d [n] and ෤e [n] 

represent the DTFS coef. 

of ෤x[ n], ෨h[ n] and ෤y[ n] 

respectively. 

It can easily be verified that: ෤ek = 5෤ck
෨dk, k = 0, ..., 4
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2. Analysis of Non-Periodic Discrete-Time Signals

1. Synthesis equation: (Inverse transform) [ ] { ( )} ( )1 1

2
j nx n X X e d





− 

−
=  =  F

Discrete-time Fourier transform (DTFT)

2. Analysis equation: (Forward transform) ( ) { [ ]} [ ] j n
n

X x n x n e
 − 

=−
 = = F

Existence of the DTFT

▪ A sufficient condition for the convergence of DTFT for the signal x[n] be 

absolute summable, [ ]
n

x n


=−
 

▪ Alternatively, it is also sufficient for x[n] to be square-summable: [ ]
2

n
x n



=−
 

DTFT of some signals

▪ Example 7: DTFT of right-sided exponential signal
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( )
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
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1

2

1
11 2

X X


 

− 
 =  = −

− + − 

[ ] [ ], 1nx n u n = 

▪ Example 8: DTFT of unit-impulse signal

{ [ ]} [ ] 1j n
n

n n e 
 − 
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= =F
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▪ Example 9: DTFT for discrete-time pulse

 ,
[ ]

, otherwise

L n L
x n

−  
=
1
0

( )
( )

) sin ( )
( ) ( )

sin

 − ( + 
− 

−  =−

+−
 = = =

−


j L j L
L j n
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Le e
X e

e

1
2

2

2 1
1

1

▪ Example 10: Inverse DTFT of rectangular spectrum defined in the range 

−     by:  ,
[ ]

, otherwise
c cX

−    
 =

1
0

X(Ω) must be 2-periodic: X() = X( + 2)
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sin( )
[ ]

sinc( )

1
2
2 2

c

c

j n c

c c

n
x n e d

n
F Fn
 

 

−


=  =

=



▪ Example 11: Inverse DTFT of the unit-impulse function

Find the signal of which the DTFT is X() = () in the range −    .

X() must be 2-periodic:

[ ] ( ) , all 
1 1
2

j nx n e d n





 


−
=   =


( )

1
2

2 m
m 





=−
⎯→  −F

( ) ( )2
m

X m 


=−
 =  −

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/Fourier Analysis for Discrete Time Signals and Systems 19/332024-2025

{ } ( )  


=−

⎯→  −
m

m1 2 2FF

Properties of the DTFT

[ ] and [ ]

[ ]

( ) ( )

( ) ( )[ ]

1 1

1 1 2 2 1

2

1 2

1

2

X X

X X

x n x n

x n x n   

⎯→ ⎯→

 + ⎯→ +

 

 

F F

F

Periodicity X( + 2r) = X() for all integer r

Linearity

Time shifting ( ) ([ ] [ ] ) j mx n x eXnX m −⎯→  − ⎯→F F

Time reversal and Conjugation [ ] [ ]

[ ]

( ) ( )

( ) )] ([

x n x n

x

X X

X Xn x n 

⎯→  − ⎯→ −

⎯→ ⎯



  →



−

F F

F F
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Symmetry of the DTFT

DTFST of even and odd signals

▪ If the real-valued signal x[n] is an even function of time, the resulting DTFT is 

real-valued  X() for all .

x[n]: Real, Im{x[n]} = 0 implies that X 
*() = X(−).

x[n]: Imag, Re {x[n]} =  implies that X 
*() = −X(−).

x[−n] = x[n] , for all n implies that Im{X()} = 0 , all 

▪ If the real-valued signal x[n] is an odd function of time, the resulting DTFT 

X() is purely imaginary.

x[−n] = −x[n] , for all n implies that Re{X()} = 0 , all 

Frequency shifting [ ] ( ) [ ] ( )
j nx n X x n e X

⎯→   ⎯→  − 0
0

F F
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Modulation property

 
/ /

[ ] ( )

[ ]cos( ) ( ) ( )

[ ]sin( ) ( ) ( )

1
0 0 02

1
0 0 02

j j

x n X

x n n X X

x n t X e X e −  

⎯→  

 ⎯→  −  +  + 

  ⎯→  −  +  +  

F

F

F

Convolution property [ ] ( ) and [ ] ( )

[ ] [ ] ( ) ( )

1 1 2 2

1 2 1 2

x n X x n X

x n x n X X

⎯→  ⎯→ 

  ⎯→  

F F

F

Differentiation in the frequency domain
( )

[ ] ( ) [ ]
m

m m
m

d X
x n X n x n j

d


⎯→   ⎯→



F F

▪ Example 12: Convolution using the DTFT

h[n] = (2/3)nu[n] and x[n] = (3/4)nu[n] 

Determine the convolution y[n] = h[n] ∗ x[n] using the DTFT
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( ) , ( )
2 3
3 4

1 1

1 1j jH X
e e−  − 

 =  =
− −

( ) ( ) ( )
2 3
3 4

8 9

1 1j jY H X
e e−  − 

−
 =   = +

− −
⇒ y[n] = −8(2/3)nu[n] + 9(3/4)nu[n] 

Multiplication of two signals [ ] ( ) and [ ] ( )

[ ] [ ] ( ) ( )

1 1 2 2

1 2 1 22
1

x n X x n X

x n x n X X d



  

 −

⎯→  ⎯→ 

 ⎯→  −

F F

F

Applying DTFT to periodic signals

[ ] ,
j nx n e  

= −   0
0

{1} ( ) ( ) ( )     
 

=− =−
=  −  =  −  − 

j n

m m
m e m0

02 2 2 2F F

▪ Example 13: DTFT of complex exponential signal
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▪ Example 14: DTFT of sinusoidal signal

[ ] cos( ),x n n  =  −   0 0

{1} ( )

{cos( )} ( ) ( )

m

m m

m

n m m

  

     



=−

 

=− =−

=  − 

 =  −  − +  +  −



 0 0 0

2 2

2 2

F

F

Let           represent the part of the transform in the range −    .( )X 

( ) ( ) ( )X   =  −  +  + 0 0

The DTFT can now be expressed as ( ) ( )
m

X X m


=−
 =  − 2

▪ In general for a periodic DT signal ෤x[n]:
( / )[ ]

N j N kn
kk

x n c e
− 

=
= 

1 2
0
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( / ) ( / )( ) [ ]
N N

j n j N kn j n j N kn j n
k k

n n k k n

X x n e c e e c e e
  − − 

−   −   − 

=− =− = = =−

   
 = = =   

   
    

1 1
2 2

0 0

( / )j N kne 2The expression in square brackets is the DTFT of the signal

2/N = Ω0 is the fundamental angular frequency for the periodic signal ෤x[n]:

( / ) 
     

  
− 

=− =− =−

 =  − − = ( −  − ) 
 

  j N kn j n

n m m

k
e e m k m

N
2

0
2

2 2 2 2

( )   
− 

= =−

 = ( −  − ) 
N

k
k m

X c k m
1

0
0

2 2

The part of the transform in the range 0  Ω  2 is found by setting m = 0

( )  
−

=

 = ( −  )
N

k
k

X c k
1

0
0

2 ( ) 


=−

 = ( − )
m

X X m2
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,
[ ] [ ] [ ], [ ] , [ ]

,


= + = = 

− 

n
u n x n y n x n y n

n

1
2
1
2

01
2 0

▪ Example 15: DTFT of the unit step sequence u[n]

( ) ( )  


=−
 =  − k

X k
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[ ] [ ] [ ] ( )( ) ( ) − 

− 
− − =   − =   =

−

j
jy n y n n Y e Y
e

1
1 1 1

1
{ [ ]} ( )  
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−
 jk
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[ ] [ ] [ ] [ ] [ ]
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1
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▪ Example 16: DTFT of an Accumulator System

Because of 2 periodicity, X(0) = X(2k). Moreover, X()( − 2k) = 

X(2k) ( − 2k) = X(0)( − 2k). Hence,

 [ ] ( ) ( ) ( )  


− =− =−
 −  += 

−
 
n

jk k
x k X k X

e

1
0

1
F
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Parseval’s theorem

▪ For a periodic power signal ෤x [n] with period N and DTFS coefficients 

{෤ck, k = 0, ..., N − 1}:

[ ] ( )x n
E x n X d



 



=− −
= =   

2 21
2

▪ For a non-periodic energy signal x[n] with DTFT, X():

[ ]
− −

= =
= = 

N N
x kn kNP x n c

1 12 2

0 0
1

▪ Example 17: DTFT of an Accumulator System

Find the energy of x[n] = sinc(cn), assuming c  

rect rect{sinc( )}


 

  
−

    
 =  =   

  

 
  

 =
    c
c c c

x
c c

E dn
2

1
22 2

F
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3. Transfer Function Concept

▪ In time-domain analysis of systems two distinct descriptions for DTLTI systems:

1. A linear constant-coefficient difference equation that describes the 

relationship between the input and the output signals.

2. An impulse response which can be used with the convolution operation for 

determining the response of the system to an arbitrary input signal.

▪ The concept of Transfer function will be introduced as the third method for 

describing the characteristics of a system.

( ) { [ ]} [ ]
 − 

=−
 = = 

j n
n

H h n h n eF

▪ The transfer function concept is valid for LTI systems only.

▪ In general, H() is a complex function of ,                               .( )( ) ( ) jH H e  = 
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Obtaining the transfer function from the difference equation

( )
[ ] [ ] [ ] ( ) ( ) ( ) ( )

( )

Y
y n h n x n Y H X H

X


=  ⎯→  =     =


F

[ ] ( ), , , [ ] ( ), , , 0 1 0 1j m j my n m e Y m x n m e X m−  − − ⎯→  = − ⎯→  =F F

▪ Example 18: Transfer function for length-N moving average filter
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N N j N
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−
 
1 1

0 0

1 1 1 1

1

( )/sin( / )
( )

sin( / )
j NN

H e
N

 −
 =


1 22

2
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4. DTLTI Systems with Periodic Input Signals

( / )[ ]
1 2
0

N j N kn
kk

x n c e −

=
= 

Response of a DTLTI system to complex exponential signal

[ ]
j nx n e 

= 0

( )
[ ] [ ] [ ] [ ] [ ] [ ] [ ]0 0 0j n k j n j k

k k k
y n h n x n h k x n k h k e e h k e

   −  − 

=− =− =−
=  = − = =  

[ ( )]
[ ] ( ) ( )0 0 0

0 0
j n j ny n e H H e  + 

=  = 
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Response of a DTLTI system to sinusoidal signal

[ ] cos( )0x n n= 

( ) ( )

[ ] ( ) ( )

[ ] ( ) ( )

j n j n

j n j j n j

y n e H e H

y n e H e e H e

 − 

   −   −

=  + − 

=  + − 

0 0

0 0 0 0

1 1
0 02 2

1 1
0 02 2

( ) cos( )
j n j nx t n e e − 

=  = +0 01 1
0 2 2

If the imp. response h[n] is real-valued: ( ) ( ) , ( ) ( )0 0 0 0H H−  =   −  = − 

[ ( )] [ ( )]
[ ] ( ) ( ) ( ) cos( ( ))

j n j ny n H e H e H n +  −  + 
=  +  =   +  0 0 0 01 1

0 0 0 0 02 2

▪ Example 19: Steady-state response of DTLTI system to sinusoidal input

y[n] − 0.9y[n − 1] + 0.36y[n − 2] = x[n] − 0.2x[n − 1]

▪ That is, ejt is an eigenfunction of a LTI system for the eigenvalue H().
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Find the response of the system to the sinusoidal input signal ( ) cos( )= nx t 55
( )

( )
( ) 2

1 0 2

1 0 9 0 36

.
. .

j

j j

e

e e

Y
H

X

− 

−  − 

−
= =

+



−




/

/ /
( / )

5
0 31

2
39

5 55 1 8890 0 6133 1 9861
1 0 2

1 0 9 0 36
.

. .
. .. .

j

j j
je

e e
H j e



 


−

− −

−−

−
= −

+
= =

The steady-state response of the system to the specified input signal ෤x[n] is:

[ ] ( / ) cos( / ( / )) cos( / )   = +  = −. .y n H n n5 5 5 5 9 9305 5 0 3139
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Response of a DTLTI system to periodic input signal

( / )[ ]
1 2
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N j N kn
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= 
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1 1 1

2 2 2

0 0 0

2N N N
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   = = =   
  

  

5. DTLTI Systems with Non Periodic Input Signals

For a non-periodic signal x[n] as input to a DTLTI system. The output of the 

system y[n] is given by: [ ] [ ] [ ]y n h n x n= 

▪ Let us assume that The system is stable ensuring that H(Ω) converges, and 

the DTFT of the input signal also converges.

( ) ( ) ( ) , ( ) ( ) ( )Y H X Y X =    =  +  ( ) ( ) ( )Y H X =  
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