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Chapter 8

Z-Transform for Discrete-Time Signals and Systems

1 Z-Transform

2 Inverse Z-Transform

3 Using the Z-Transform with DTLTI Systems

4 Simulation Structures for DTLTI Systems
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Concept Map for 

DT Systems 

Impulse Response

h[n] = {1, 1, 2, 3, 5, 8, 13, …}

Transfer FunctionDifference Equation

Block Diagram
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Introduction

▪ The z-transform (ZT) can be viewed as a generalization of the discrete time 

Fourier transform.

▪ The ZT representation exists for some sequences that  do not have a discrete 

Fourier transform representation. So, we can handle some sequences with the 

ZT that cannot be handled with the DTFT (x[n] = nu[n]).

1. Z-Transform

{ [ ]} ( ) [ ] n

n

x n X z x n z


−

=−

= = Z

▪ The z-transform of a discrete-time signal x[n] is defined as:

where z, the independent variable of the transform is a complex number.
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▪ The z-transform defined is sometimes referred to as the bilateral (two sided) 

z-transform. A simplified variant of the transform termed the unilateral (one-

sided) z-transform is introduced as an alternative analysis tool.

Relationship Between ZT and Discrete-Time FT

( ) [ ] { [ ]}

 −

= =−
= =j

n
z e n

X z x n z x nF

( , ) ( ) [ ]( ) [ ] { [ ]}

  − − −  −

= =− =−
 = = = = j

j n n j n n
z re n n

X r X z x n re x n r e r x nF

▪ Example 1: A simple z-transform example

[ ] {3.7 , . , 1.5, 3.4, 5.2}


= −x n 1 3

( ) [ ]
 − − − − −

=−
= = + − + + . . . . .n

n
X z x n z z z z z1 2 3 43 7 1 3 1 5 3 4 5 2

The transform converges at all points in the complex z-plane except of z = 0.
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▪ Example 2: z-transform of a non-causal signal [ ] {3.7, . , 1.5 , 3.4, 5.2}


= −x n 1 3

( ) [ ]
 − − −

=−
= = + − + + . . . . .n

n
X z x n z z z z z2 1 1 23 7 1 3 1 5 3 4 5 2

It converges at every point in the z-plane except, the origin and infinity.

▪ Example 3: z-Transform of the unit-impulse

{ [ ]} [ ] [ ]
 −

=−
= = =

n
n

n x n z x z 00 1Z It converges at every point in the z-plane

▪ Example 4: z-Transform of a time shifted the unit-impulse

( ) { [ ]}= [ ]
 − −

=−
= − =

n k
n

X z n k x n z zZ

1. If k  0 then the transform does not converge at the origin z = 0.

2. If k  0 then the transform does not converge at infinity.
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Regions of Convergence (ROC)

▪ For the z-transform X(z) of x[n] to exist we need that:

( ) [ ] [ ] [ ]
  − − −  −

=− =− =−
=  =    

n n j n n
n n n

X z x n z x n r e x n r

Thus, the ROC depends only on r and not on Ω.

▪ The region of convergence (ROC) of the z-transform of a signal x[n] of finite 

support [N0, N1], where −∞ < N0 ≤ n ≤ N1 < ∞, is the whole z-plane, excluding 

the origin z = 0 and/or z = ±∞ depending on N0 and N1. ( ) [ ] −

=
= 

N n
n N

X z x n z1

0

▪ ROC of Infinite-Support Signals:

1. Causal signal x[n] has a ROC |z|  r1, where r1 is the largest radius of the 

poles of X(z),
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2. anticausal signal x[n] has as region of convergence the inside of the circle 

defined by the smallest radius r2 of the poles of X(z), or |z|  r2,

3. noncausal signal x[n] has as ROC r1  |z|  r2, where r1 and r2 corresponds to 

the maximum and minimum radii of the poles of Xc(z) and Xac(z): the 

z-transforms of the causal and anticausal components of x[n] = xc[n] + xac[n].
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▪ Example 5: z-Transform of the unit-step signal

( ) { [ ]} n

n

z
X z u n z

zz


−

−
=

= = = =
−−

 1
0

1

11
Z

converge if: |z−1|  1 ⇒ |z|  1

▪ Example 6: z-Transform of a causal exponential signal x[n] = anu[n]

( ) [ ] ( )
  

− − −

−
=− = =

= = = = =
−−

  n n n n n

n n n

z
X z a u n z a z az

z aaz
1

1
0 0

1

1

converge if: |az−1|  1 ⇒ |z|  |a|
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▪ Example 7: z-Transform of an anti-causal exponential signal x[n] = −anu[−n − 1]

( ) [ ] ( )
 −  − − − −

=− =− = =

−

−

= − − − = − = − = −

= − =
−−

   n n n n m m m
n n m m

X z a u n z a z a z a z
z

a z
z aa z

1 1
1 1

1
1

1
1

1
converge if: |a−1z|  1 ⇒ |z|  |a|

{ [ ]} , ROC: ; { [ ]} , ROC: =  − − − = 
− −

n nz z
a u n z a a u n z a

z a z a
1Z Z

▪ Note: two different signals have the same X(z) ⇒ the ROC must be specified.
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( )( ) ( )( )
( )

( ) ( )( ) ( )

− − −
= =

− − −

M

N

z z z z z zB z
X z K K

A z p p p p p p
1 2

1 2

Max(M, N) is the order of the transform X(z)

▪ In the general case, a rational transform X(z) is expressed in the form
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( ) ( ) , ROC: 
( )

−−
−

− −
=

− −
= = = 

− −


N NN
n

N
n

z z
X z z z

z z z

1

1 1
0

1 1
1 0

1 1

▪ Example 8: z-Transform of a discrete-time pulse signal

It seems as though X(z) might have a pole at z = 1

Zeros: / , , , = = −j k N
kz e k N2 1 1 Poles: z = 1 and , , , = = −kp k N0 1 1
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Properties of z-Transform

Property x[n] X(z) ROC

Linearity ax1[n] + bx2[n] aX1(z) + bX2(z) ⊃ (R1 ∩ R2)

Time shifting x[n −  k] X(z)z−k R ± {0 or ∞}

Time reversal x[−n] X(z−1) R−1

Multiply by exp. x[n]an X(z/a) |a|R

Differentiate in z nx[n] −z dX(z)/dz R

Convolution x1[n] x2[n] X1(z) X2(z) ⊃ (R1 ∩ R2)

Summation ⊃ (R ∩ (z    1))[ ]
=−


n

k

x k ( )
−

z
X z

z 1
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[ ] [ ]


=
j nx n e u n0

( ) ( )
 

 − −

 −
= =

= = =
−

 
j n jn n

j
n n

X z e z e z
e z

0 0

0

1
1

0 0

1

1

ROC: 
 −   
je z z0 1 1 1( )


=

−
j

z
X z

z e 0

▪ Example 9: z-Transform of complex exponential signal

[ ] cos( ) [ ]= x n n u n0

cos( ) [ ] [ ] [ ]
 − 

 = +
j n j nn u n e u n e u n0 0

0
1 1
2 2

▪ Example 10: z-Transform of a cosine and sine signals

[ ] sin( ) [ ]= x n n u n0

sin( ) [ ] [ ] [ ]
 − 

 = −
j n j n

j jn u n e u n e u n0 0
0

1 1
2 2
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ROC is |z|  1

{cos( ) [ ]} { [ ]} { [ ]}

cos( )/ /

cos( )

[ cos( )]

cos( )

 − 

−

 −  − −− −

 = +

− 
= + =

−  +− −

− 
=

−  +

j n j n

j j

n u n e u n e u n

z

z ze z e z

z z

z z

0 0

0 0

0

1
0
1 21 1

0

0
2

0

1 1
2 2

11 2 1 2

1 21 1

2 1

Z Z Z

ROC is |z|  1

{sin( ) [ ]} { [ ]} { [ ]}

sin( )/ /

cos( )

sin( )

cos( )

 − 

−

 −  − −− −

 = −


= − =

−  +− −


=

−  +

j n j n

j j

j jt u n e u n e u n

zj j

z ze z e z

z

z z

0 0

0 0

0

1
0

1 21 1
0

0
2

0

1 1
2 2

1 2 1 2

1 21 1

2 1

Z Z Z
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[ ] cos( ) [ ]= nx n a n u n0▪ Example 11: Multiplication by an exponential signal:

[ cos( )]
[ ] [ ], ( )

cos( )

− 
= =

−  +

n z
x n a x n X z

z z
0

1 1 2
0

1

2 1

[ cos( )]
( ) ( / )

cos( )

− 
= =

−  +

z z a
X z X z a

z a z a
0

1 1 2 2
02

The transform X(z) has two poles at:

ROC: 
 

=  
jz ae z a0

▪ Example 12: Using the differentiation property: x[n] = nan u[n]

{ [ ]} , ROC: n z
a u n z a

z a
= 

−
Z
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( ) ( ) , ROC: 
( )

= − = 
− −

d z az
X z z z a

dz z a z a 2

z-Transform of a unit-ramp signal x[n] = nu[n]

Setting a = 1 ⇒ ( ) , ROC: 
( ) ( )

=

= = 
− −

a

az z
X z z

z a z2 2
1

1
1

▪ Example 13: Using the convolution property [ ] { , , , }, [ ] { , , }
 

= =x n x n1 24 3 2 1 3 7 4

Determine x[n] = x1[n]  x2[n] using z-transform techniques.

( ) 2 , ( ) 4− − − − −= + + + = + +X z z z z X z z z1 2 3 1 2
1 24 3 3 7

( ) ( ) ( ) 43 4− − − − −= = + + + + +X z X z X z z z z z z1 2 3 4 5
1 2 12 37 29 15

[ ] { , , , , , }


=x n 12 37 43 29 15 4
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▪ Example 14: Determine x[n] = x1[n]  x2[n] using z-transform techniques

[ ] { , , , 1}, [ ] {3, , }
 

= =x n x n1 24 3 2 7 4

( ) , ( )− − − − −= + + + = + +X z z z z X z z z1 2 3 1 2
1 24 3 2 3 7 4

( ) ( ) ( ) − − − − −= = + + + + +X z X z X z z z z z z1 2 3 4 5
1 2 12 37 43 29 15 4

[ ] { , , , , , }


=x n 12 37 43 29 15 4

▪ Example 15: Finding the output signal of a DTLTI system using inverse 

z-transform: h[n] = (0.9)nu[n], x[n] = u[n] − u[n − 7]

( ) { [ ]} , ROC: .
.
z

H z h n z
z

= = 
−

0 9
0 9

Z

( ) , ROC: 
( )

− − − − − − −

=

−
= = + + + + + + = 

−
 n

n

z
X z z z z z z z z z

z z

76
1 2 3 4 5 6

6
0

1
1 0

1
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

Y z X z H z

H z z H z z H z z H z z H z z H z z H z− − − − − −

=

= + + + + + +1 2 3 4 5 6

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]= + − + − + − + − + − + −y n h n h n h n h n h n h n h n1 2 3 4 5 6

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ]

( ) [ ] ( ) [ ] ( ) [ ]

1 2 3

4 5 6

0 9 0 9 1 0 9 2 0 9 3

0 9 4 0 9 5 0 9 6

. . . .

. . .

n n n n

n n n

y n u n u n u n u n

u n u n u n

− − −

− − −

= + − + − + −

+ − + − + −

Initial and final value Theorems

Initial and final value properties of the z-transform applies to causal signals only.

[ ] lim ( )
→

=
z

x X z0Initial value: lim [ ] lim ( ) ( )
n z
x n z X z

→ →
= −

1
1Final value:

▪ Example 16: Determine the initial value x[0] of the signal ( )
+ +

=
− + −

z z
X z

z z z

3

3 2

3 2 5

2 7 4
[0] lim

→

+ +
= =

− + −z

z z
x

z z z

3

3 2

3 2 5 3

22 7 4
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2. Inverse Z-Transform

▪ Recall that the inverse z-transform x of X is given by:

 where  is a counterclockwise closed circular contour centered at the origin 

and with radius r such that  is in the ROC of X.

▪ For rational functions, the inverse z-transform can be more easily computed 

using partial fraction expansions (PFE).

[ ] ( )


−= 
n

jx n X z z dz11
2

▪ Example 17: Finding the inverse z-transform using PFE
( )( )

( )
( / )( )

z z
X z

z z

− +
=

− −

1 2

1 2 2
( ) ( )( )

( / )( ) ( ) ( )

X z z z

z z z z z z z

− + −
= = + +

− − − −

5 4
3 3
1
2

1 2 2

1 2 2 2

( ) ( ) ( ) ( )
( ) ( )

z z
X z X z X z X z

z z
= − + + = + +

− −

5 4
3 3

1 2 31
2

2
2
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Possibility 1: ROC: |z|  ½

X2(z) and X3(z) must correspond 

to anti-causal signals:

ROC for X2(z): |z|  ½

ROC for X3(z): |z|  2

( )[ ] [ ]= − − −
n

x n u n5 1
2 3 2 1

( )[ ] [ ]= − − −
n

x n u n4
3 3 2 1

( ) ( )[ ] [ ] [ ]  = − − + − −
  

n n
x n n u n5 1 4

3 2 32 2 1

[ ] { , , , , , , }


= − − − − − −. . .x n 53 375 26 75 13 5 7 4 2

X1(z), is a constant, and its ROC is the entire z-plane. [ ] { } [ ]x n n−= − = −1
1 2 2Z
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Possibility 2: ROC: |z|  2

X2(z) and X3(z) must correspond 

to causal signals. We need:

ROC for X2(z): |z|  ½

ROC for X3(z): |z|  2

( )[ ] [ ]=
n

x n u n5 1
2 3 2

( )[ ] [ ]=
n

x n u n4
3 3 2

( ) ( )[ ] [ ] [ ]  = − + +
  

n n
x n n u n5 1 4

3 2 32 2

[ ] { , , , , , }


= . . . .x n 1 3 5 5 75 8 208 13 385
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Possibility 3: ROC: ½  |z|  2

X2(z) and X3(z) must correspond 

to noncausal signals. We need:

ROC for X2(z): |z|  ½

ROC for X3(z): |z|  2

( )[ ] [ ]=
n

x n u n5 1
2 3 2

( )[ ] [ ]= − − −
n

x n u n4
3 3 2 1

( ) ( )[ ] [ ] [ ] [ ]= − + − − −
n n

x n n u n u n5 1 4
3 2 32 2 1

[ ] { , , , , , , }


= − − −. . . . .x n 0 333 0 667 0 333 0 833 0 417
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Transfer Function and LTI Systems

h[n]

H(z)

x[n]

X(z)

y[n]

Y(z)

▪ Since y[n] = x[n]  h[n] (zero-state response), the system is characterized in 

the z-domain by Y(z) = X(z)H(z).

▪ H(z) is the transfer function (or system function) of the system (i.e., the 

transfer function is the z-Transform of the impulse response).

▪ A LTI system is completely characterized by its transfer function H.

Block Diagram Representation

3. Using the Z-Transform with DTLTI Systems

[ ] [ ] [ ] [ ] [ ]

( ) ( ) ( )

k

y n x n h n x k h n k

Y z X z H z



=−

=  = −

=


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Relating the transfer function to the difference equation

▪ Many DTLTI systems of practical interest can be represented using an Nth-

order linear difference equation with constant coefficients.

▪ Consider a system with input x and output y that is characterized by the DE:

[ ] [ ]
= =

− = − 
N M

k kk k
a y n k b x n k
0 0

where the ak and bk are complex constants and

       [ ] [ ] [ ] [ ]
= = = =

− = −  − = −   
N M N M

k k k kk k k k
a y n k b x n k a y n k b x n k
0 0 0 0

Z Z Z Z

   [ ] [ ]
= =

− = − 
N M

k kk k
a y n k b x n k
0 0
Z Z

( )
( ) ( ) ( )

( )

−

− − =

= = −

=

=  = =


 


M k
N M kk k k

k k Nk k k
kk

b zY z
a z Y z b z X z H z

X z a z
0

0 0

0
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▪ The impulse response of the system h[n] = Z−1{H(z)}.

▪ The transfer function concept is meaningful only for LTI systems that are both 

linear and time invariant.

▪ In determining the transfer function from the difference equation, all initial 

conditions must be assumed to be zero.

▪ Example 18: A DTLTI system is defined by means of the difference equation:

[ ] [ ] [ ] [ ] [ ]. .y n y n y n x n x n− − + − = − −0 4 1 0 89 2 1

( ) ( ) ( ) ( ) ( ). .Y z z Y z z Y z X z z X s− − −− + = −1 2 10 4 0 89

( ) ( )
( )

( ) . . . .
Y z z z z

H z
X z z z z z

−

− −

− −
= = =

− + − +

1

1 2 2

1 1

1 0 4 0 89 0 4 0 89

Find the transfer function H(z) for this system.
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Response of a DTLTI system to a complex exponential signal [ ] nx n z= 0

[ ] [ ] [ ] [ ] [ ] [ ] ( )
  −

=− =−
=  = − = = 

n k n
k k

y n h n x n h k x n k h k z z H z0 0 0

Transfer function and causality

▪ For a DTLTI system to be causal, its impulse response h[n] needs to be equal 

to zero for n  0. ( ) [ ] [ ]
 − −

=− =
= = 

n n
k k

H z h n z h n z
0

where z0 represents a point in the z-plane within the ROC of the TF.

▪ Complex geometric sequences are eigenfunctions of DTLTI systems. 

▪ The ROC for the transfer function of a causal system is the outside of a circle 

in the z-plane. Consequently, the transfer function must also converge at 

|z| → ∞. Consider a transfer function in the form:
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( )
( )

( )

−
−

−
−

+ + + +
= =

+ + + +

M M
M M
N N

N N

b z b z b z bY z
H z

X z a z a z a z a

1
1 1 0

1
1 1 0

For H(z) to be causal: lim ( ) lim M NM

z z
N

b
H z z M N M N

a
−

→ →
=    −   0

▪ Note: this condition is necessary for a system to be causal, but it is not 

sufficient. It is also possible for a non-causal system to have a TF with M ≤ N.

[ ]
 −

=−
 

n
k
h n z

▪ The FT of a signal exists if the signal is absolute summable. But the FT of the 

impulse response is equal to the z-domain transfer function evaluated on the 

unit circle of the z-plane, that is,

Transfer function and stability:

▪ For a DTLTI system to be stable                                 .
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( ) ( ) jz e
H H z =

 =

Stability condition:

▪ For a DTLTI system to be stable, the ROC of its z-domain transfer function 

must include the unit circle.

▪ For a causal system to be stable, the transfer function must not have any 

poles on or outside the unit circle of the z-plane.

provided that the unit circle of the z-plane is within the ROC.

▪ For an anticausal system to be stable, the transfer function must not have any 

poles on or inside the unit circle of the z-plane.

▪ For a noncausal system the ROC for the transfer function, if it exists, is the 

region between two circles with radii r1 and r2, r1  |z|  r2. The poles of the 

transfer function may be either:
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a. On or inside the circle with radius r1

b. On or outside the circle with radius r2

and the ROC must include the unit circle.

▪ Example 19: Determine the impulse response of a stable system:

( )
( )

( )( )( ). .
z z

H z
z z z

+
=

− + −

1

0 8 1 2 2

The poles are at p = −1.2, 0.8, 2. Since the system is stable, its ROC must 

include the unit circle. The only possible choice is 0.8  |z|  1.2.

( )
( )

( )( )( )

. . .
. . . .
z z z z z

H z
z z z z z z

+
= = − − +

− + − − + −

1 0 75 0 0312 0 7813

0 8 1 2 2 0 8 1 2 2

[ ] ( ) [ ] ( ) [ ] ( ) [ ]. . . . .n n nh n u n u n u n= − + − − − − − −0 75 0 8 0 0312 1 2 1 0 7813 2 1
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▪ Example 20: A DTLTI system is characterized by the difference equation:

Comment on the stability of this system.

3 ( )( )
( )

( )( )( )2 . . . . .. .
z z z z

H z
z j z j zz z z

+ + + +
= =

− + − − −− + −

2

3 2

2 1 2

0 4 0 8 0 4 0 8 1 52 3 1 2

[ ] [ ] [ ] [ ] [ ] [ ] [ ]. .y n x n x n x n y n y n y n= − + − + − + − − − + −1 3 2 2 3 2 3 1 2 2 1 2 3

[ ] [ ] [ ] [ ] [ ] [ ] [ ]. .y n y n y n y n x n x n x n− − + − − − = − + − + −2 3 1 2 2 1 2 3 1 3 2 2 3
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Since the system is known to be causal (form of the difference equation), 

its ROC must be the outside of a circle. ROC: |z|  1.5

Since the ROC does not include the unit circle, the system is unstable.

Inverse systems

▪ The inverse of a system is another system which, when connected in cascade 

with the original system, forms an identity system.

▪ Let the original system h[n] and its inverse hi[n] be both DTLTI systems.

heq [n] = h[n] ∗ hi[n] = [n]

( )
( ) ( ) ( ) ( )=  =eq i i H zH z H z H z H z 1
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▪ Two important characteristics of the inverse system are causality and stability.

( )
( )

( )

M M
M M
N N

N N

b z b z b z bB z
H z

A z a z a z a z a

−
−

−
−

+ + + +
= =

+ + + +

1
1 1 0

1
1 1 0

( )
( )

( )

N N
N N

i M M
M M

a z a z a z aA z
H z

B z b z b z b z b

−
−

−
−

+ + + +
= =

+ + + +

1
1 1 0

1
1 1 0

▪ If the original system H(z) is causal then M ≤ N. Causality of the inverse 

system Hi(z) requires N ≤ M. Hence, we need N = M if both the original 

system and its inverse are required to be causal.

▪ To analyze the stability of the inverse system, using N = M we have:
( )( ) ( )

( )
( )( ) ( )

N N

N N

b z z z z z z
H z

a z p z p z p

− − −
=

− − −

1 2

1 2

H(s) in pole-zero form

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/z-Transform for Discrete-Time Signals and Systems 35/522024-2025

▪ If the original system is both causal and stable, |pk|  1, k = 1, ..., N.

▪ For the inverse system to be stable, both zeros and poles of the original 

system must be inside the unit circle: |pk|  1, and |zk|  1, k = 1, ..., N.

( )( ) ( )
( )

( )( ) ( )

N N
i

N N

a z p z p z p
H z

b z z z z z z

− − −
=

− − −

1 2

1 2

▪ A causal DTLTI system that has all of its zeros and poles inside the unit circle 

is referred to as a minimum-phase system. A minimum-phase system and its 

inverse are both causal and stable.

▪ Example 21: A DTLTI system is described by a difference equation

Determine if a causal and stable inverse can be found for this system.

[ ] [ ] [ ] [ ] [ ]. . .y n y n y n x n x n= − + − + + −0 1 1 0 72 2 0 5 1
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( ) ( ) ( ) ( ) ( )
.

. . .
. .

z
z z Y z z X z H z

z z

−
− − −

− −

+
− − = +  =

− −

1
1 2 1

1 2

1 0 5
1 0 1 0 72 1 0 5

1 0 1 0 72

( )( )
( )

( )

. . . .
. .i

z z z z
H z

z z z

− −

−

+ − − −
= =

+ +

1 2

1

0 8 0 9 1 0 1 0 72

0 5 1 0 5

Since all poles and zeros are inside the unit 

circle, H(z) is a minimum phase system.

( )
( )

( )( )

.
. .
z z

H z
z z

+
=

+ −

0 5

0 8 0 9

causal and stable. Its 

difference equation is:

[ ] [ ] [ ] [ ] [ ]. . .y n y n x n x n x n= − − + − − − −0 5 1 0 1 1 0 72 2

4. Simulation Structures for DTLTI Systems

Direct-form implementation

▪ The general form of the z-domain transfer function for a DTLTI system is:

( )
( )

( )

1 2
0 1 2

1 2
1 21

M M
M
N

N

b z b z b z b zY z
H z

X z a z a z a z

− − −

− − −

+ + + +
= =

+ + + +
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▪ The method of obtaining a block diagram from an z-domain TF will be derived 

using a third-order system, but its generalization to higher-order TF is quite 

straightforward. Consider a DTLTI system described by a TF H(z):
( )

( )
( )

1 2 3
0 1 2 3

1 2 3
1 2 31

b b z b z b zY z
H z

X z a z a z a z

− − −

− − −

+ + +
= =

+ + +

Let us use an intermediate function V(z)

( ) ( )
( ) ( ) ( )

( ) ( )

Y z V z
H z H z H z

V z X z
= =1 2

( ) ( )
( ) , ( )

( ) ( )

V z Y z
H z b b z b z b z H z

X z V z a z a z a z
− − −

− − −
= = + + + = =

+ + +

1 2 3
1 0 1 2 3 2 1 2 3

1 2 3

1

1

https://manara.edu.sy/


https://manara.edu.sy/

https://manara.edu.sy/z-Transform for Discrete-Time Signals and Systems 38/522024-2025

Direct-form I realization of H(z)
Direct-form I realization of H(z) using 

time-domain quantities

( ) ( ) ( ) ( ) ( )

[ ] [ ] [ ] [ ] [ ]

− − −= + + +

= + − + − + −

V z b X z b z X z b z X z b z X z
v n b x n b x n b x n b x n

1 2 3
0 1 2 3

0 1 2 31 2 3

( ) ( ) ( ) ( ) ( )

[ ] [ ] [ ] [ ] [ ]

− − −= − − −

= − − − − − −

Y z V z a z Y z a z Y z a z Y z
y n v n a y n a y n a y n

1 2 3
1 2 3

1 2 31 2 3
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▪ Example 22: A causal DTLTI system is described by the transfer function

( )
0.966. .

z z
H z

z z z z

− +
=

− − + −

3

4 3 2

7 6

0 34 0 2403

Draw a direct-form type-I block diagram 

for implementing this system.

( )
0.966. .

z z z
H z

z z z z

− − −

− − − −

− +
=

− − + −

1 3 4

1 2 3 4

7 6

1 0 34 0 2403

Since each subsystem, H1(z) and H2(z), is linear, it does not matter which one 

comes first in a cascade connection.
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Direct-form II realization of H(z)
Block diagram obtained by swapping 

the order of two subsystems

▪ Example 23: Direct-form type-II implementation of a system

Draw a direct-form II block diagram for implementing the system used in 

Example 22.
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Cascade and parallel forms

Cascade form

Parallel form

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

M

M

H z H z H z H z

W z W z W z

X z X z X z

= + + +

= + + +

1 2

1 2

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
M

M

W z W z Y z
H z H z H z H z

X z W z W z−

= = 1 2
1 2

1 1
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▪ Example 24: Cascade form block diagram

Develop a cascade form block diagram for the DTLTI system used in 

Example 22

( )( )( )
( )

( )( )( )( ). . . . . .
z z z

H z
z z z j z j

+ − −
=

+ − − − − +

3 1 2

0 9 0 3 0 8 0 5 0 8 0 5

The system function can be broken down into cascade sections in a 

number of ways. Let us choose to have two second-order sections

( )( )
( )

( )( ). . . .
z z z z

H z
z z z z

+ − + −
= =

+ − + −

2

1 2

3 1 2 3

0 9 0 3 0 6 0 27

( )
( )

( )( ). . . . . .
z z

H z
z j z j z z

− −
= =

− − − + − +
2 2

2 2

0 8 0 5 0 8 0 5 1 6 0 89
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It is also possible to consolidate the neighboring adders in the middle
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( )
− − +

= + +
+ − − −

− −
+

− +

. . . .
. . . .

. .
. .

j
H z

z z z j
j

z j

3 0709 6 5450 1 2371 1 7480

0 9 0 3 0 8 0 5
1 2371 1 7480

0 8 0 5

( )
. . . .

. . . .
z

H z
z z z z

− +
= + =

+ − + −
1 2

3 0709 6 5450 3 474 6 812

0 9 0 3 0 6 0 27

( )
. . . . . .

. . . . . .
j j z

H z
z j z j z z

− + − − − +
= + =

− − − + − +
2 2

1 2371 1 7480 1 2371 1 7480 2 474 0 2314

0 8 0 5 0 8 0 5 1 6 0 89

Let us use two second-order sections

▪ Example 25: Develop a parallel form block 

diagram for the DTLTI system used in Example 22
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5. Unilateral Z-Transform

The unilateral z-transform of x[n] is defined as:

{ [ ]} { [ ] [ ]} [ ] [ ]
 −

=−
= = 

n
u n
x n x n u n x n u n zZ Z

▪ The unilateral ZT is related to the bilateral z-transform as follows:

( ) { [ ]} [ ]
 −

=
= = 

n
u u n
X z x n x n z

0
Z

▪ If x[n] is a causal signal, then Xu(z) becomes identical to X(z).

▪ One property of the unilateral z-transform that differs from its counterpart for 

the bilateral z-transform is the time-shifting property.

{ [ ]} { [ ]} ( )x n z x n z X z− −− = =1 11Z Z

{ [ ]} [ ] [ ] [ ] [ ] [ ]n n n
u

n n n

x n x n z x x n z x z x n z
  

− − − −

= = =

− = − = − + − = − +  1
0 1 0

1 1 1 1 1Z
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{ [ ]} [ ] ( )u ux n x z X z−− = − + 11 1Z

{ [ ]} [ ] ( ),
− − − −

=−
− = + 

n k k
u un k
x n k x n z z X z k

1
0Z

{ [ ]} ( ) [ ] ,
− −

=
+ = − 

kk k n
u u n
x n k z X z x n z k

1

0
0Z

▪ Note: The unilateral z-transform is useful in the use of z-transform techniques 

for solving difference equations with specified initial conditions.

▪ Example 26: Using z-transform techniques, determine the natural response of 

the system for the initial conditions: y[−1] = 19, y[−2] = 53.

[ ] [ ] [ ]y n y n y n− − + − =5 1
6 61 2 0

{ [ ]} [ ] ( ) ( )u u uy n y z Y z z Y z− −− = − + = +1 11 1 19Z

{ [ ]} [ ] [ ] ( ) ( )u u uy n y y z z Y z z z Y z− − − −− = − + − + = + +1 2 1 22 2 1 53 19Z
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( ) [ ( )] [ ( )]u u uY z z Y z z z Y z− − −− + + + + =1 1 25 1
6 619 53 19 0

(7 ) (7 )
( )

( )( )
u

z z z z z z
Y z

z z z zz z

− −
= = = +

− − − −− +

19 19
6 6

2 1 1 1 15 1
2 3 2 36 6

2 5

[ ] ( ) [ ] ( ) [ ]n n
hy n u n u n= +1 1

2 32 5

▪ Example 27: Determine the response of this system for the input signal x[n] =

20cos(0.2n) if the initial value of the output is y[−1] = 2.5.

y[n] = 0.9y[n − 1] + 0.1x[n]

[ cos( )] [ cos( )]
{cos( ) [ ]} { cos( )}

cos( ) cos( )

0
0 2 2

0

20 0 2
20 0 2

2 1 2 0 2 1

.
.

.u

z z z z
n u n n

z z z z






−  −
 =  =

−  + − +
Z Z

{ [ ]} [ ] ( ) ( ).u u uy n y z Y z z Y z− −− = − + = +1 11 1 2 5Z

{ [ ]} { [ ]} { [ ]}. .u u uy n y n x n= − +0 9 1 0 1Z Z Z
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[ cos( )]
( ) [ ( )]

cos( )

1
2

20 0 2
0 9 2 5 0 1

2 0 2 1

.
. . .

.u u

z z
Y z z Y z

z z





− −
= + +

− +

[ cos( )]
( ) ( )

cos( )

1
2

2 0 2
0 9 2 25

2 0 2 1

.
. .

.u u

z z
Y z z Y z

z z





− −
= + +

− +

[ cos( )] ( )( )
( )

( )( )( )

2 0 2 0 2

0 2 0 2

2 0 2 2 25

0 9

. .

. .

. .
.

j j

u j j

z z z e z e
Y z

z z e z e

 

 

 −

−

− + − −
=

− − −

( )
0 2 0 2

2 7129 0 7685 1 4953 0 7685 1 4953

0 9 . .

. . . . .
.u j j

j j
Y z

z z e z e −

− +
= + +

− − −

The forced response of the system is:

y[n] = 2.7129 (0.9)n u[n] + 1.5371cos(0.2n)u[n] + 2.9907sin(0.2n)u[n]
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Analysis of LTI Systems Represented by Difference Equations

( )
( ) ( ) ( )

( ) ( )

B z
Y z X z I z

A z A z
= +

1

( )
( ) , ( )

( ) [ ] ,

  

 

− −

= =

− − −

= =−

= = =

= =

 

 

N Mk k
k N kk k

N n k
k Nk n k

A z z B z z

I z x n z

0 0

1

1

1

1

[ ] [ ],
= =

− = − 
N M

k kk k
a y n k b x n k
0 0

y[− k] for k = 1,... , N

[ ] [ ] [ ], ,    
−

= =
− + − = − = =  k k

N N

N M
k k k kk k

a b
a ay n N y n k x n k

1

0 0

( )
( ) , ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
= =  = +
B z

H z H z Y z H z X z H z I z
A z A z1 1

1

the complete response: y[n] = yzs [n] + yzi [n], where
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is the system’s zero-state response,

is the system’s zero-input response.

▪ Example 28: DLTI system described by the DE: y[n] + 3y[n − 1] + 2y[n − 2] = x[n] 

has input x[n] = 2
nu[n] and initial conditions y[−1] = 0 and y[−2] = 1/2. Determine 

the zero-input response and the zero-state response of this system.

[ ] { ( ) ( )}zs uy n H z X z−= 1Z

[ ] { ( ) ( )}zi uy n H z I z−= 1
1Z

( ) ( [ ] ( )) ( [ ] [ ] ( )] ( )Y z y z Y z y y z z Y z X z− − −+ − + + − + − + =1 1 23 1 2 2 1

( ) ( ( )) ( ( )] ( )(1 )− − − −+ + + =  + + = −
− −

.
z z

Y z z Y z z Y z Y z z z
z z

1 2 1 23 2 0 5 3 2 1
2 2

( )
( )(1 ) (1 )− − − −

−
= +

−+ + + +

z
Y z

zz z z z1 2 1 2

1 1

23 2 3 2

( )
( )( ) ( )

−
= +

− + + + +

z z
Y z

z z z z z

3 2

2 1 2 12 3 2 3 2
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( ) / /

( )( )( ) ( )( )

− − −
= + = + + + +

− + + + + + + − + +

Y z z z

z z z z z z z z z z z

2 1 3 1 1 3 1 2

2 2 1 2 1 1 2 2 1 2

  

/ /
( )

( ) ( ) ( ) ( ) ( )

zero state response zero input response

z z z z z
Y z

z z z z z
− −

− −
= + + + +

+ + − + +

1 3 1 3 2

1 2 2 1 2

[ ] ( ) ( ) ( ) ,

[ ] ( ) ( ) ,

n n n
zs

n n
zi

y n n

y n n

= − − + − + 

= − − − 

1 1
3 31 2 2 0

1 2 2 0

[ ] ( ) ( ) ( ) ,n n ny n n= − − − + 2 1
3 31 2 2 0

  

( )
( )( )( ) ( )( )

− −

−
= +

− + + + +
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Impulse Response
h[n] = {1, 1, 2, 3, 5, 8, 13, …}

Transfer FunctionDifference Equation

Block Diagram

[ ] [ ] [ ] [ ]y n x n y n y n= + − + −1 2

D+ Dx
y

1

( )

( )

Y z z
X z z z

=
− −

2

2 1

Impulse Response
h(t) = 2(e−t/2 − e−t)u(t)

Transfer FunctionDifferential Equation

Block Diagram

( ) ( ) ( ) ( )y t y t y t x t+ + =2 3 2

+  +x y
−3/2

−1/2

( )

( )

Y s
X s s s

=
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2

2 3 1

1
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Concept Map: relations between 

CT and DT representations 
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