

An harmonic excitation can be described either by means of a sine function: $p(t) = p_0 \sin \Omega t$, or by means of a cosine function: $p(t) = p_0 \cos \Omega t$.

Equation of Motion (E.o.M.):

معادلة الحركة

$$m\ddot{u} + cu' + ku = p(t) = \begin{cases} p_0 \cos \Omega t \\ p_0 \sin \Omega t \end{cases}$$

حلها هو مجموع حل متجانس (استجابة) (homogenous) and steady-state (particular) components. حل خاص (استجابة دائمة).

$$u(t) = \underbrace{e^{-\xi \omega t} (A \cos \omega_D t + B \sin \omega_D t)}_{\text{transient}} + \underbrace{C \cos \Omega t + D \sin \Omega t}_{\text{steady state}}$$

إيجاد الحل الخاص (استجابة دائمة) Find C & D , for the cosine and sine functions of harmonic excitation

Undamped harmonic vibrations

الاهتزازات القسرية الهازمونية غير المخمدة

$$m\ddot{u} + ku = p_0 \cos \Omega t \quad \ddot{u} + \omega_n^2 u = \left(\frac{p_0}{m}\right) \cos \Omega t = \left(\frac{p_0}{k}\right) \left(\frac{k}{m}\right) \cos \Omega t \quad \ddot{u} + \omega_n^2 u = \omega_n^2 u_{st} \cos \Omega t$$

يمكن للحل الخاص (استجابة دائمة) أن يأخذ الشكل

$$u_p(t) = C \cos \Omega t \quad \ddot{u}_p(t) = -C \Omega^2 \cos \Omega t \quad (-C \Omega^2 + C \omega_n^2) \cos \Omega t = \omega_n^2 u_{st} \cos \Omega t$$

$$(\omega_n^2 - \Omega^2)C = \omega_n^2 u_{st} \quad C = \frac{\omega_n^2 u_{st}}{(\omega_n^2 - \Omega^2)} \quad C = \frac{u_{st}}{(1 - r^2)} \quad \text{where} \quad r = \frac{\Omega}{\omega_n}$$

The transient response (The homogeneous solution) is

$$u_h(t) = A \cos \omega_n t + B \sin \omega_n t$$

The complete solution is (A homogeneous solution) is

$$u(t) = A \cos \omega_n t + B \sin \omega_n t + \frac{\omega_n^2 u_{st}}{(\omega_n^2 - \Omega^2)} \cos \Omega t$$

Undamped harmonic vibrations

الاهتزازات القسرية الهازمونية غير المخمدة

$$u(t) = A \cos \omega_n t + B \sin \omega_n t + \frac{\omega_n^2 u_{st}}{(\omega_n^2 - \Omega^2)} \cos \Omega t$$

By means of the initial conditions given by :

$$u(0) = u_0 \quad \& \quad \dot{u}(0) = \dot{u}_0$$

the constants A and B can be calculated as follows:

$$A = u_0 - \frac{\omega_n^2 u_{st}}{(\omega_n^2 - \Omega^2)} \quad \& \quad B = \frac{\dot{u}_0}{\omega_n}$$

$$u(t) = \left(u_0 - \frac{\omega_n^2 u_{st}}{(\omega_n^2 - \Omega^2)} \right) \cos \omega_n t + \left(\frac{\dot{u}_0}{\omega_n} \right) \sin \omega_n t + \frac{\omega_n^2 u_{st}}{(\omega_n^2 - \Omega^2)} \cos \Omega t$$

For two null initial conditions the complete solution is,

$$u(0) = 0 \quad \& \quad \dot{u}(0) = 0$$

$$u(t) = \frac{\omega_n^2 u_{st}}{(\omega_n^2 - \Omega^2)} (\cos \Omega t - \cos \omega_n t)$$

Undamped harmonic vibrations

الاهتزازات القسرية الهازمونية غير المخمدة

$$u(t) = \frac{\omega_n^2 u_{st}}{(\omega_n^2 - \Omega^2)} (\cos \Omega t - \cos \omega_n t)$$

Using the trigonometric identity

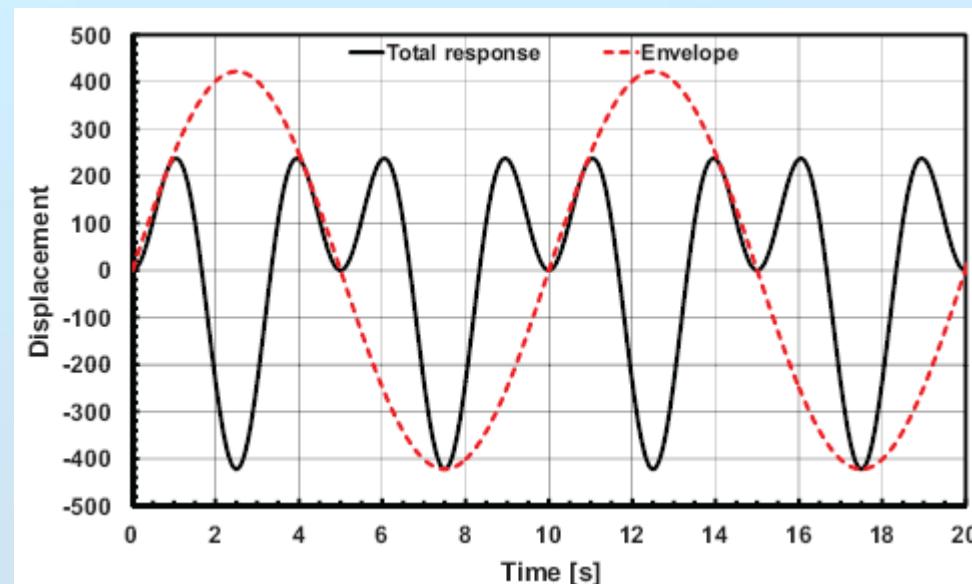
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha - \beta}{2} \sin \frac{\alpha + \beta}{2}$$

We get

$$u(t) = \frac{2\omega_n^2 u_{st}}{(\Omega^2 - \omega_n^2)} \sin\left(\frac{\Omega - \omega_n}{2}t\right) \sin\left(\frac{\Omega + \omega_n}{2}t\right)$$

Case 1: Natural frequency SDoF 0.2 Hz, excitation frequency 0.4 Hz. $\Omega / \omega_n = 2$

$$u(t) = \frac{2u_{st}}{3} \sin(0.2\pi t) \sin(0.6\pi t)$$



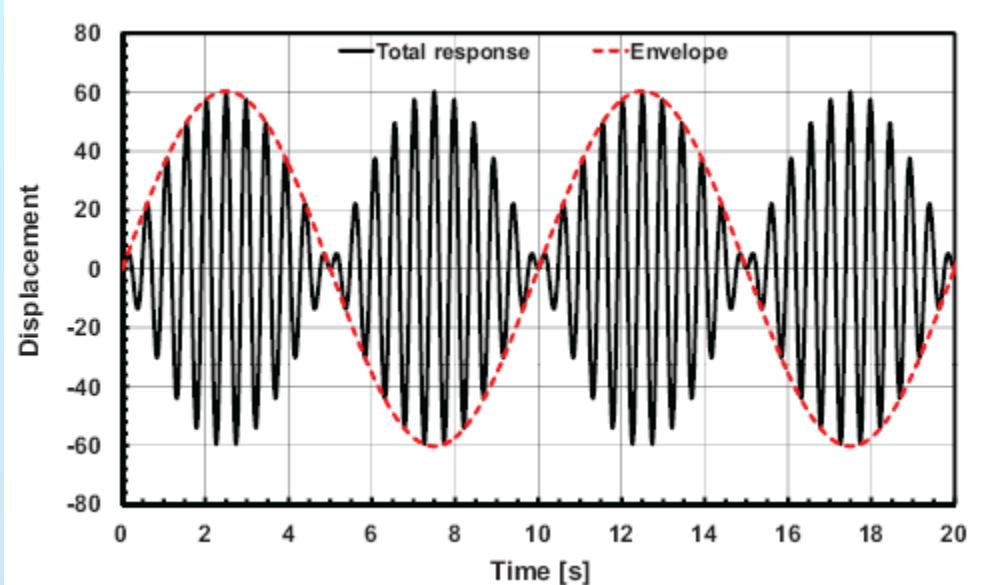
Undamped harmonic vibrations

الاهتزازات القسرية الهازمونية غير المخمدة

$$u(t) = \frac{2\omega_n^2 u_{st}}{(\Omega^2 - \omega_n^2)} \sin\left(\frac{\Omega - \omega_n}{2}t\right) \sin\left(\frac{\Omega + \omega_n}{2}t\right)$$

Case 2: Natural frequency SDoF 2.0 Hz, excitation frequency 2.2 Hz. $\Omega / \omega_n = 1.1$

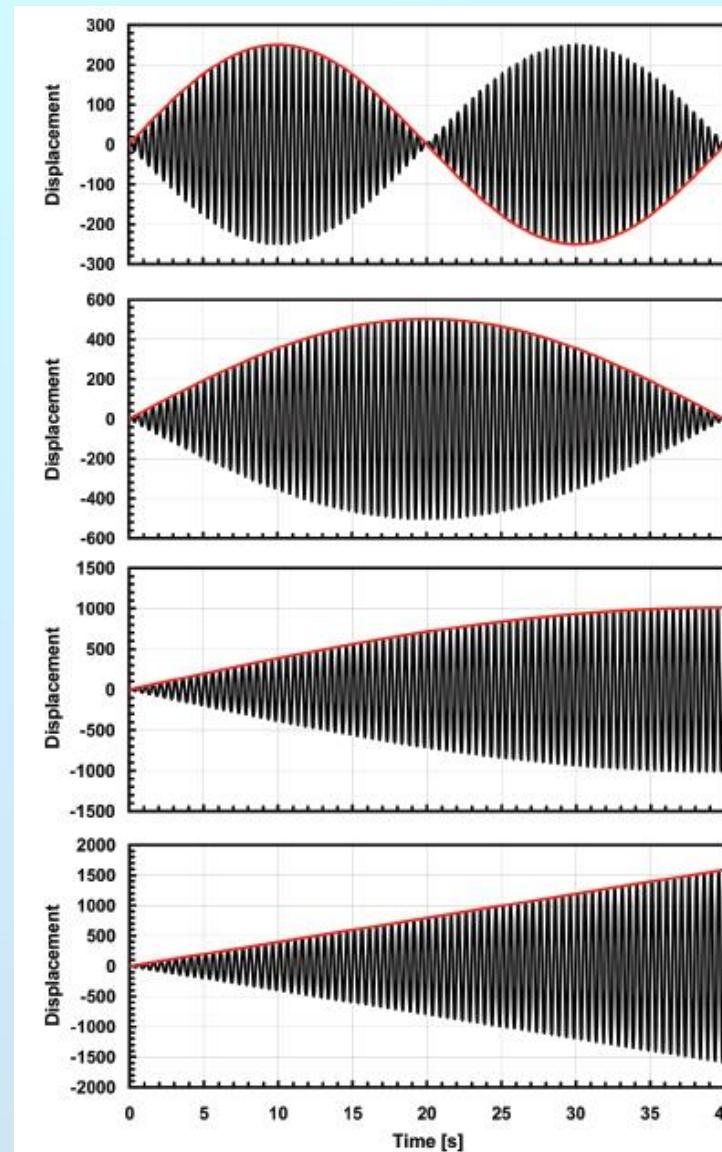
$$u(t) = 9.52u_{st} \sin(0.2\pi t) \sin(4.2\pi t)$$



A beat is always present, but is more evident when the natural frequency of the SDoF system and the excitation frequency are close

الاستجابة للتحريض الهازموني (المثلثي) الاهتزازات القسرية الهازمونية غير المخمدة

Response to Harmonic Excitation Undamped harmonic vibrations



$$\Omega / \omega_n = 1.025$$

$$\Omega / \omega_n = 1.0125$$

$$\Omega / \omega_n = 1.00625$$

$$\Omega / \omega_n = 1. \text{ Resonance}$$

Undamped harmonic vibrations

الاهتزازات القسرية الهازمونية غير المخمدة

Resonant excitation ($\Omega = \omega_n$)

$$\ddot{u} + \omega_n^2 u = \omega_n^2 u_{st} \cos \Omega t$$

$$\ddot{u} + \omega_n^2 u = \omega_n^2 u_{st} \cos \omega_n t$$

A steady-state response (A particular solution) could not be $u_p(t) = C \cos \omega_n t$

Another possible choice is $u_p(t) = C t \sin \omega_n t$

$$\dot{u}_p(t) = C \sin \omega_n t + C t \omega_n \cos \omega_n t$$

$$\ddot{u}_p(t) = 2C \omega_n \cos \omega_n t - C t \omega_n^2 \sin \omega_n t$$

Substituting into the E. o. M.

$$2C \omega_n \cos \omega_n t - C t \omega_n^2 \sin \omega_n t + C t \omega_n^2 \sin \omega_n t = \omega_n^2 u_{st} \cos \omega_n t \quad 2C = \omega_n u_{st}$$

So the particular solution is

$$u_p(t) = \left(\frac{\omega_n u_{st}}{2} \right) t \sin \omega_n t$$

Undamped harmonic vibrations

الاهتزازات القسرية الهازمونية غير المخمدة

The transient response (The homogeneous solution) is

$$u_h(t) = A \cos \omega_n t + B \sin \omega_n t$$

The complete solution is (A homogeneous solution) is

$$u(t) = A \cos \omega_n t + B \sin \omega_n t + \left(\frac{\omega_n u_{st}}{2} \right) t \sin \omega_n t$$

By means of the initial conditions given by , $u(0) = u_0$ & $\dot{u}(0) = \dot{u}_0$

the constants A and B can be calculated as follows: $A = u_0$ & $B = \dot{u}_0 / \omega_n$

$$u(t) = u_0 \cos \omega_n t + \left(\frac{\dot{u}_0}{\omega_n} \right) \sin \omega_n t + \left(\frac{\omega_n u_{st}}{2} \right) t \sin \omega_n t$$

For two null initial conditions the homogeneous part of the solution falls away and the complete solution reduces to the particular solution,

$$u(t) = \left(\frac{\omega_n u_{st}}{2} \right) t \sin \omega_n t$$

Undamped harmonic vibrations

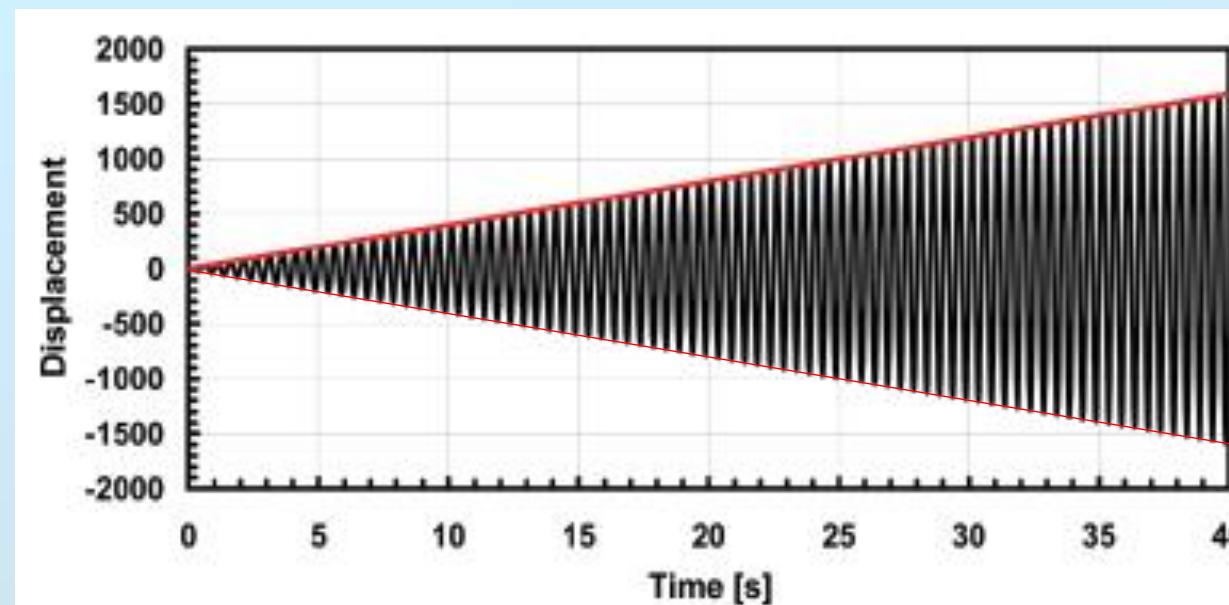
الاهتزازات القسرية الهازمونية غير المخمدة

$$u(t) = \left(\frac{\omega_n u_{st}}{2} \right) t \sin \omega_n t$$

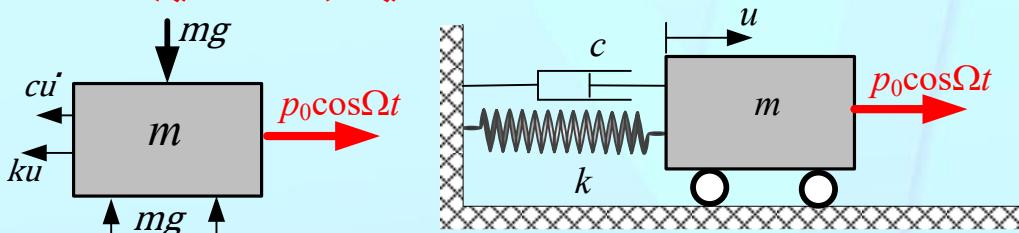
This is a sinusoidal vibration with increasing amplitude: $C = (\omega_n u_{st}/2)t$.

The amplitude grows linearly with time and when: $t \rightarrow \infty$, $C \rightarrow \infty$.

After infinite time the amplitude of the vibration is infinite as well.



Damped harmonic vibrations



$$m\ddot{u} + cu + ku = p_0 \cos \Omega t$$

$$\ddot{u} + 2\xi\omega_n\dot{u} + \omega_n^2 u = (p_0 / m) \cos \Omega t$$

Canonical E. o. M. $\ddot{u} + 2\xi\omega_n\dot{u} + \omega_n^2 u = \omega_n^2 u_{st} \cos \Omega t$

Particular solution

$$u_p(t) = C \cos \Omega t + D \sin \Omega t$$

$$\dot{u}_p(t) = -C\Omega \sin \Omega t + D\Omega \cos \Omega t$$

$$\ddot{u}_p(t) = -C\Omega^2 \cos \Omega t - D\Omega^2 \sin \Omega t \quad \text{Sub. Into E. o. M.}$$

$$-C\Omega^2 \cos \Omega t - D\Omega^2 \sin \Omega t + 2\xi\omega_n(-C\Omega \sin \Omega t + D\Omega \cos \Omega t) + \omega_n^2 u = \omega_n^2 u_{st} \cos \Omega t$$

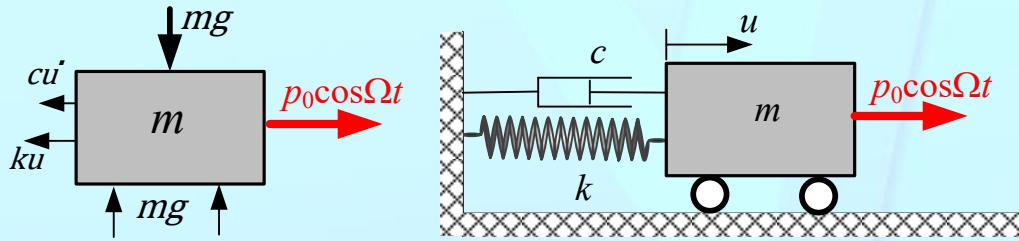
$$((\omega_n^2 - \Omega^2)C + 2\xi\omega_n\Omega D) \cos \Omega t + (-2\xi\omega_n\Omega C + (\omega_n^2 - \Omega^2)D) \sin \Omega t = \omega_n^2 u_{st} \cos \Omega t$$

This is true at any time t , So

$$\left. \begin{aligned} (\omega_n^2 - \Omega^2)C + 2\xi\omega_n\Omega D &= \omega_n^2 u_{st} \\ -2\xi\omega_n\Omega C + (\omega_n^2 - \Omega^2)D &= 0 \end{aligned} \right\} \Rightarrow \left\{ \begin{aligned} C &= \omega_n^2 u_{st} \frac{(\omega_n^2 - \Omega^2)}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2} \\ D &= \omega_n^2 u_{st} \frac{2\xi\omega_n\Omega}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2} \end{aligned} \right.$$

Response to Harmonic Excitation

Damped harmonic vibrations



Canonical E. o. M. $\ddot{u} + 2\xi\omega_n\dot{u} + \omega_n^2 u = \omega_n^2 u_{st} \cos \Omega t$

Particular solution $u_p(t) = C \cos \Omega t + D \sin \Omega t$

$$C = \omega_n^2 u_{st} \frac{(\omega_n^2 - \Omega^2)}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2} \quad \text{and} \quad D = \omega_n^2 u_{st} \frac{2\xi\omega_n\Omega}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2}$$

$$u_h(t) = e^{-\xi\omega_n t} (A \cos \omega_D t + B \sin \omega_D t) \quad \text{with} \quad \omega_D = \omega_n \sqrt{1 - \xi^2}$$

By means of the initial conditions the constants A and B , can be determined

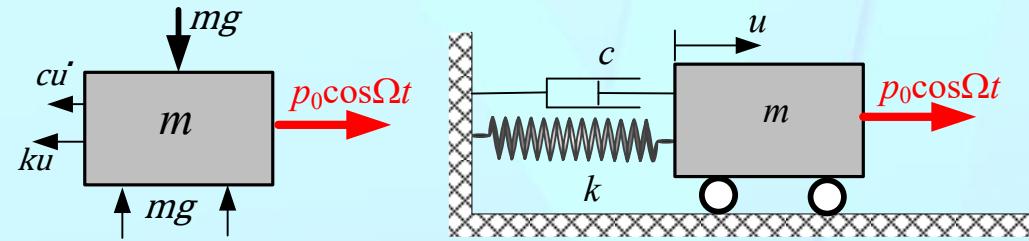
Denominations:

- Homogeneous part of the solution: “**transient**”
- Particular part of the solution: “**steady-state**”

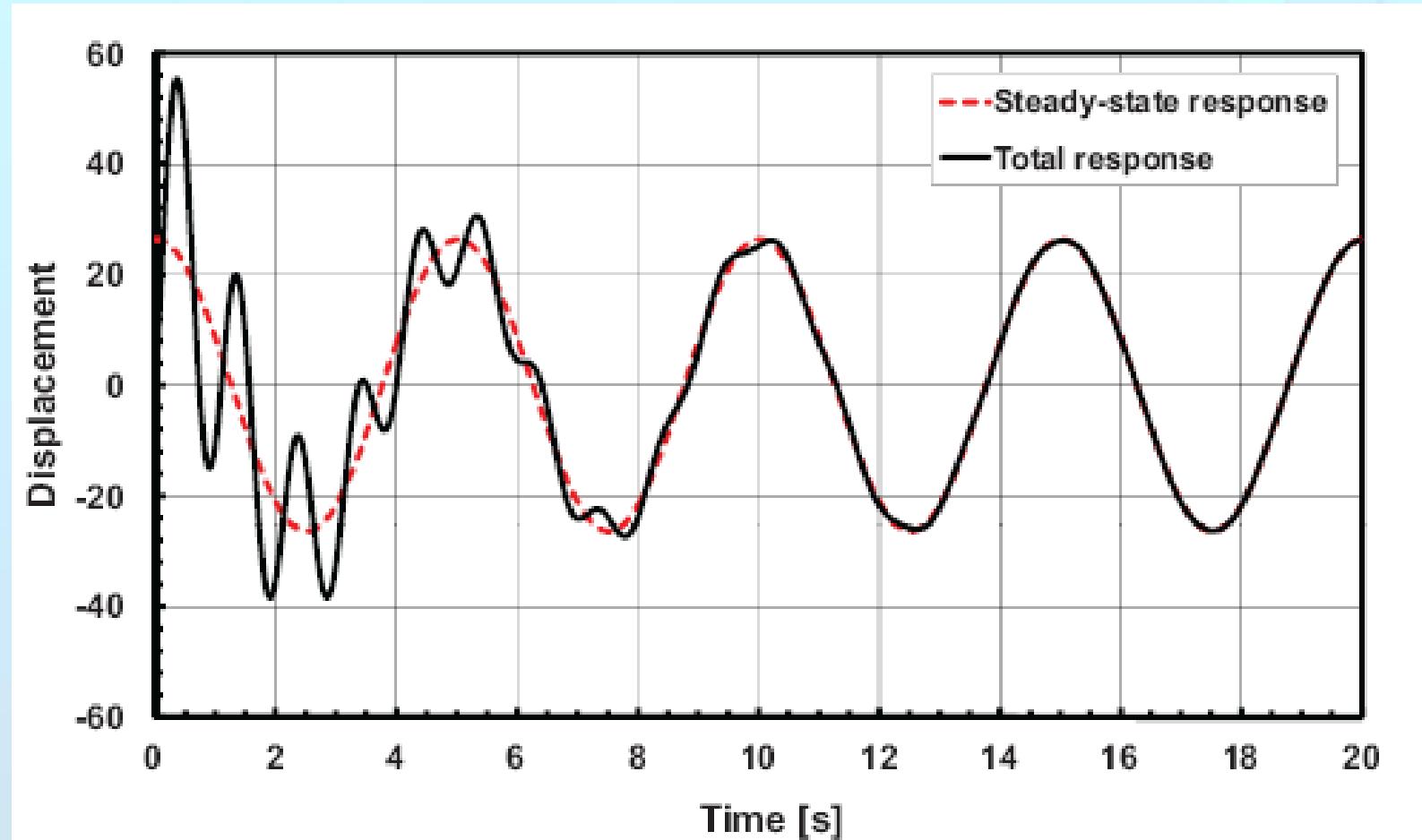
Visualization of the solution is illustrated in the next example

Response to Harmonic Excitation

Damped harmonic vibrations



Example 1: $\omega_n = 2\pi$ [rad/sec], $\Omega = 0.4\pi$ [rad/sec], $\xi = 5\%$, $u_{st} = 25\text{mm}$, $u_0 = 0$, $\dot{u}_0 = u_{st}\omega_n$



Response to Harmonic Excitation

Damped harmonic vibrations

Resonant excitation ($\Omega = \omega_n$)

Canonical E. o. M. $\ddot{u} + 2\xi\omega_n\dot{u} + \omega_n^2 u = \omega_n^2 u_{st} \cos \Omega t$

$$u_p(t) = C \cos \Omega t + D \sin \Omega t$$

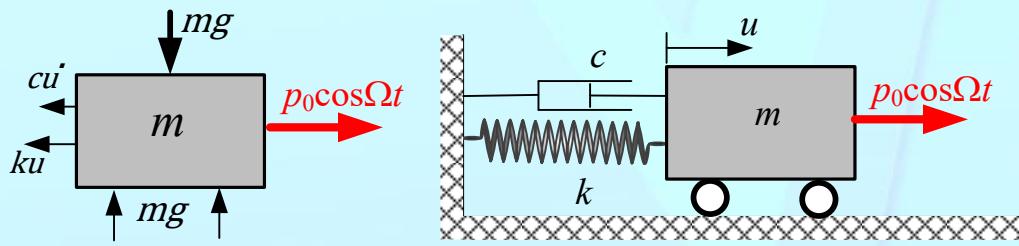
$$C = \omega_n^2 u_{st} \frac{(\omega_n^2 - \Omega^2)}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2} \quad \text{and} \quad D = \omega_n^2 u_{st} \frac{2\xi\omega_n\Omega}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2}$$

By substituting ($\Omega = \omega_n$) in the two expressions constants C and D , becomes:

$$C = 0 \quad \text{and} \quad D = \frac{u_{st}}{2\xi}$$

This means that if damping is present, the resonant excitation is not a special case anymore, and the complete solution of the differential equation is:

$$u(t) = e^{-\xi\omega_n t} (A \cos \omega_D t + B \sin \omega_D t) + \frac{u_{st}}{2\xi} \sin \omega_n t$$



Response to Harmonic Excitation

Damped harmonic vibrations

Resonant excitation ($\Omega = \omega_n$)

Canonical E. o. M. $\ddot{u} + 2\xi\omega_n\dot{u} + \omega_n^2 u = \omega_n^2 u_{st} \cos \Omega t$

$$u_p(t) = C \cos \Omega t + D \sin \Omega t$$

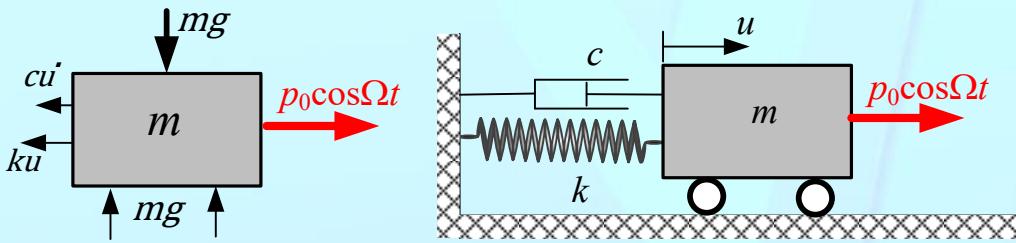
$$C = \omega_n^2 u_{st} \frac{(\omega_n^2 - \Omega^2)}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2} \quad \text{and} \quad D = \omega_n^2 u_{st} \frac{2\xi\omega_n\Omega}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2}$$

By substituting ($\Omega = \omega_n$) in the two expressions constants C and D , becomes:

$$C = 0 \quad \text{and} \quad D = \frac{u_{st}}{2\xi}$$

This means that if damping is present, the resonant excitation is not a special case anymore, and the complete solution of the differential equation is:

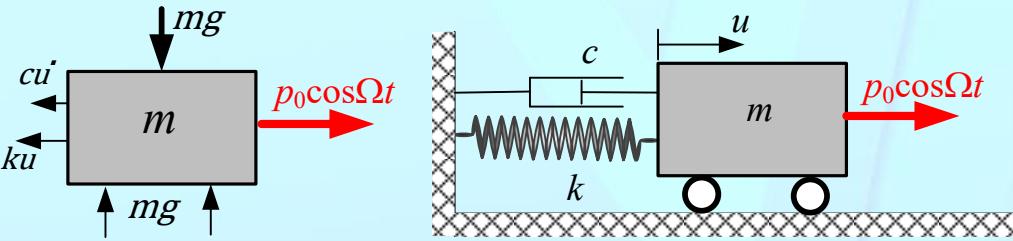
$$u(t) = e^{-\xi\omega_n t} (A \cos \omega_D t + B \sin \omega_D t) + \frac{u_{st}}{2\xi} \sin \omega_n t$$



Response to Harmonic Excitation

Damped harmonic vibrations

Resonant excitation ($\Omega = \omega_n$)



$$u(t) = e^{-\xi\omega_n t} (A \cos \omega_D t + B \sin \omega_D t) + \frac{u_{st}}{2\xi} \sin \omega_n t$$

By means of the initial conditions the constants A and B , can be determined.
For example in the special case, $u_0 = 0$ & $\dot{u}_0 = 0$, A & B , are

$$A = 0 \quad \text{and} \quad B = -\frac{u_{st}}{2\xi\sqrt{1-\xi^2}}$$

$$u(t) = \frac{u_{st}}{2\xi} \left(\sin \omega_n t - \frac{e^{-\xi\omega_n t}}{\sqrt{1-\xi^2}} \sin \omega_D t \right)$$

After a certain time, the **homogeneous part** of the solution vanishes and what remains is a sinusoidal oscillation of the maximum limited amplitude: ($u_{\max} = u_{st}/2\xi$)

For small damping ratios ($\xi < 0.2$), $\omega_n \approx \omega_D$ and $(1 - \xi)^{1/2} \approx 1$, hence $u(t)$ becomes:

$$u(t) = u_{\max} \left(1 - e^{-\xi\omega_n t} \right) \sin \omega_n t$$

Response to Harmonic Excitation

Damped harmonic vibrations

Dynamic Amplification Factor

The steady-state displacement of a system due to harmonic excitation is the dominant part of its response. This steady-state response is given by

$$u_p(t) = C \cos \Omega t + D \sin \Omega t$$

Where $C = \omega_n^2 u_{st} \frac{(\omega_n^2 - \Omega^2)}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2}$ and $D = \omega_n^2 u_{st} \frac{2\xi\omega_n\Omega}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2}$

By means of the trigonometric identity:

$$a \cos \alpha + b \sin \alpha = (a^2 + b^2)^{1/2} \cos(\alpha - \beta) \quad \text{with} \quad \tan \beta = b/a$$

The steady-state response can be transformed as follows

$$u_p(t) = u_{\max} \cos(\Omega t - \varphi)$$

It is a cosine vibration with the maximum dynamic amplitude u_{\max} , given by

$$u_{\max} = (C^2 + D^2)^{1/2}$$

and the phase angle φ obtained from:

$$\tan \varphi = D / C$$

Response to Harmonic Excitation

Damped harmonic vibrations

Dynamic Amplification Factor

Substitution of C and D , in u_{\max} expression gives

$$u_{\max} = \sqrt{\left[\omega_n^2 u_{st} \frac{(\omega_n^2 - \Omega^2)}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2} \right]^2 + \left[\omega_n^2 u_{st} \frac{2\xi\omega_n\Omega}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2} \right]^2}$$

$$u_{\max} = \omega_n^2 u_{st} \sqrt{\left[\frac{(\omega_n^2 - \Omega^2)}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2} \right]^2 + \left[\frac{2\xi\omega_n\Omega}{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2} \right]^2}$$

$$u_{\max} = \omega_n^2 u_{st} \sqrt{\frac{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2}{\left[(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2 \right]^2}}$$

$$u_{\max} = \omega_n^2 u_{st} \frac{1}{\sqrt{(\omega_n^2 - \Omega^2)^2 + (2\xi\omega_n\Omega)^2}}$$

$$u_{\max} = u_{st} \frac{1}{\sqrt{\left(1 - (\Omega/\omega_n)^2\right)^2 + (2\xi(\Omega/\omega_n))^2}} \quad \text{DAF} = \frac{u_{\max}}{u_{st}} = \frac{1}{\sqrt{\left(1 - (\Omega/\omega_n)^2\right)^2 + (2\xi(\Omega/\omega_n))^2}}$$

Response to Harmonic Excitation

Damped harmonic vibrations

Dynamic Amplification Factor

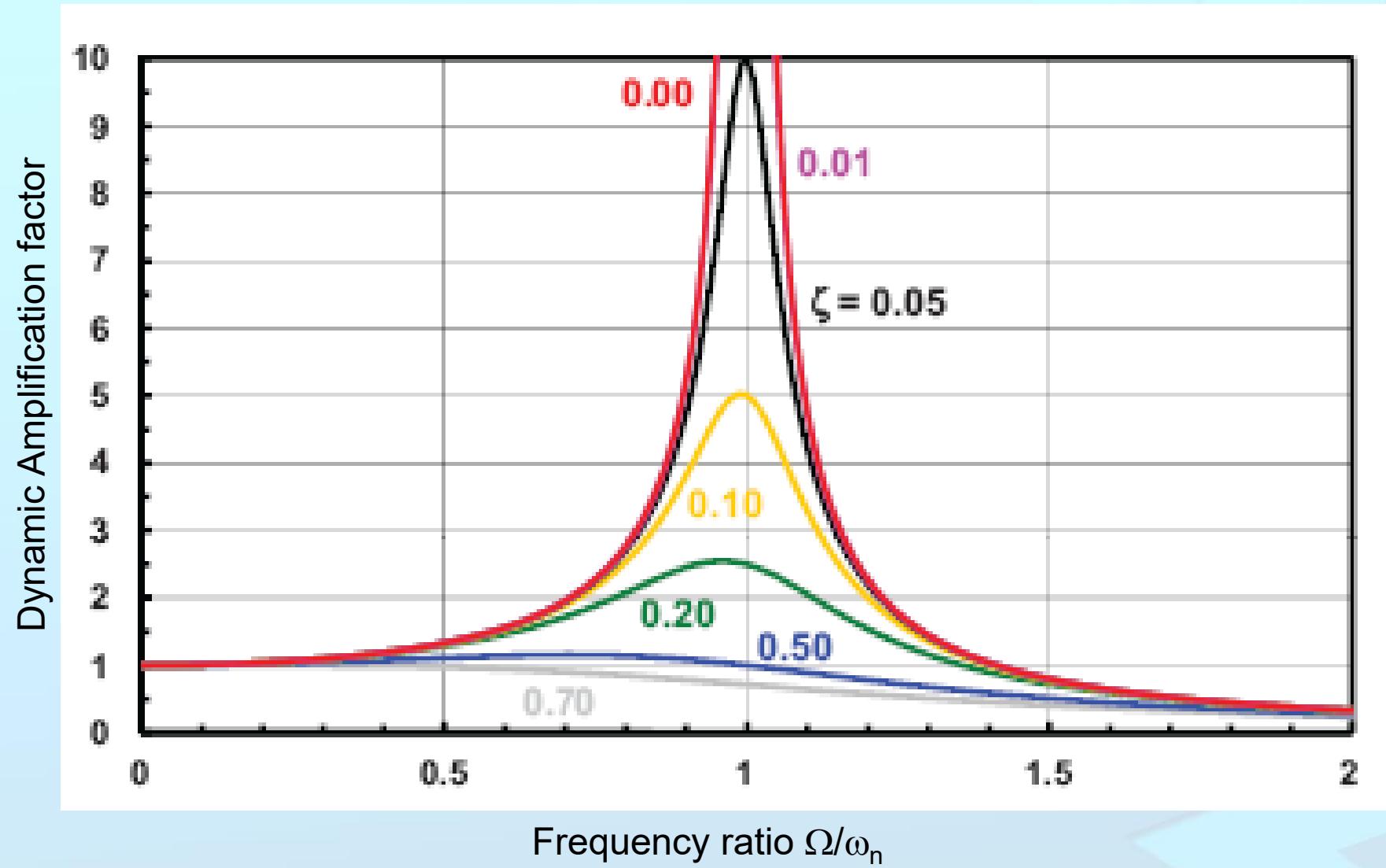
Substitution of C and D , in $\tan\varphi$ expression gives

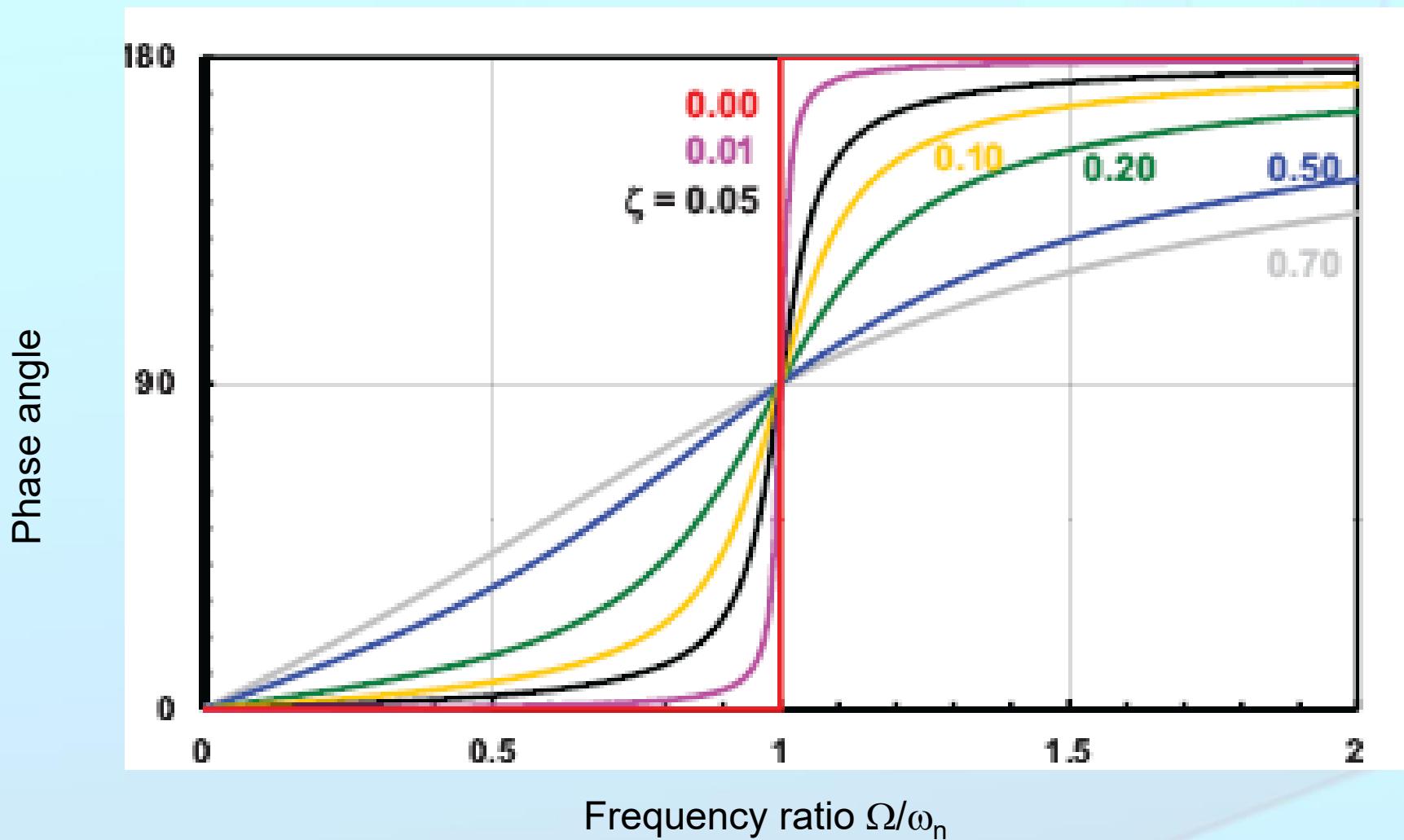
$$\tan\varphi = \frac{D}{C} = \frac{2\xi\omega_n\Omega}{(\omega_n^2 - \Omega^2)} = \frac{2\xi(\Omega/\omega_n)}{1 - (\Omega/\omega_n)^2}$$

Defining the ratio $r = \Omega/\omega_n$, the two expressions simplify to

$$\text{DAF} = \frac{u_{\text{max}}}{u_{\text{st}}} = \frac{1}{\sqrt{(1-r^2)^2 + (2\xi r)^2}}$$

$$\tan\varphi = \frac{2\xi r}{1-r^2}$$





Ex. 1. An undamped oscillator is driven by an harmonic loading. If the static displacement is $u_{st} = 0.05\text{m}$, determine the displacement response amplitude for the following frequency ratios: $r = 0.2, 0.9, 1.1, 1.8 \text{ & } 3.0$.

Ex. 2 An undamped system consisting of a 10 kg mass and a spring of stiffness $k = 4 \text{ kN/m}$ is acted upon by a harmonic force of magnitude $P_0 = 0.5 \text{ kN}$. The displacement amplitude of the steady-state response was observed to be 11 cm. Determine the frequency of the excitation force.

Ex. 3. An undamped system having a mass of 50 kg is excited by a harmonic force with magnitude $P_0=100$ N and an operating frequency of 10 Hz. The displacement amplitude of the steady-state response was observed to be 3.2 mm. Determine the spring constant k of the system.

Ex. 4. An undamped system having a mass of 10 kg and a spring of constant of $k = 8$ N/mm is excited by a harmonic force with magnitude $F_0 = 200$ N and an operating frequency of 35 rad/sec. If the initial displacement is 21 mm and the initial velocity is 175 mm/sec, determine the total displacement, velocity and acceleration of the mass at (a) $t = 2$ sec, (b) $t = 4$ sec and (c) $t = 6$ sec.

$$u(t) = \left(u_0 - \frac{\omega_n^2 u_{st}}{(\omega_n^2 - \Omega^2)} \right) \cos \omega_n t + \left(\frac{\dot{u}_0}{\omega_n} \right) \sin \omega_n t + \frac{\omega_n^2 u_{st}}{(\omega_n^2 - \Omega^2)} \cos \Omega t$$

Ex.5. An undamped spring-mass system having a mass of 4.5 kg and a spring of constant of $k = 3.5$ N/mm is excited by a harmonic force with magnitude $F_0 = 100$ N and an operating frequency of 18 rad/sec. If the initial displacement is 15 mm and the initial velocity is 150 mm/sec, determine

- (a) The frequency ratio
- (b) The amplitude of the forced response
- (c) The displacement of the mass at $t = 2$ sec

Ex. 6. A portable eccentric mass shaker is sometimes used to evaluate the *in situ* dynamic properties of a structure, using two different frequencies and measuring the displacement amplitudes as well as the phase angles. Such a test was carried out on a single story building and the following responses were recorded:

- (1) at $\Omega_1=18.30$ rad/s, $P_{01}=837$ kN, $u_{\max 1}= 1.39$ mm & $\varphi_1=8^\circ$;
- (2) at $\Omega_2=60.99$ rad/s, $P_{02}= 9300$ kN, $u_{\max 2}= 3.32$ mm & $\varphi_2=174.29^\circ$.

Compute the natural frequency ω_n & the damping ratio ξ for the structure

$$\text{DAF} = \frac{u_{\max}}{u_{st}} = \frac{1}{\sqrt{(1-r^2)^2 + (2\xi r)^2}} \quad \tan \varphi = \frac{2\xi r}{1-r^2}$$

$$u_{\max} = \frac{u_{st}}{(1-r^2)} \frac{1}{\sqrt{1 + [(2\xi r)/(1-r^2)]^2}} = \frac{u_{st} \cos \varphi}{(1-r^2)}$$

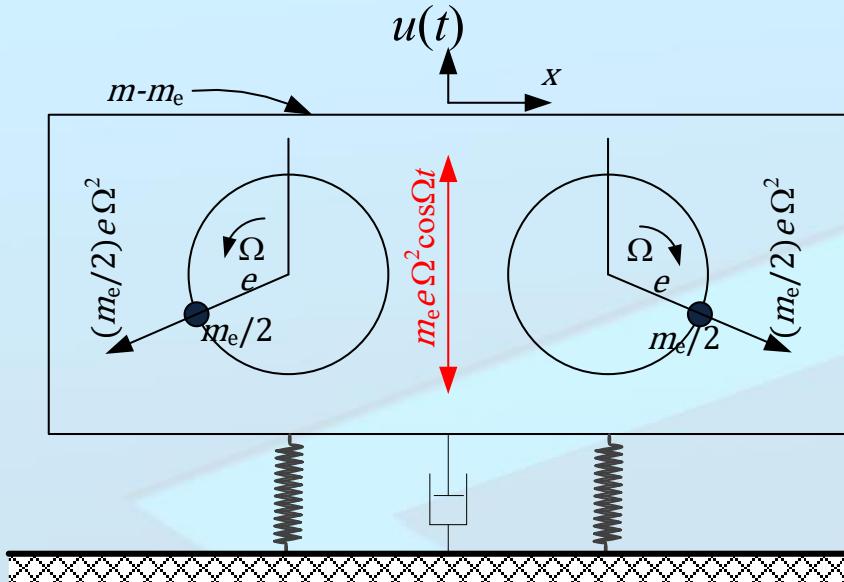
$$u_{\max} = \frac{u_{st} \cos \varphi}{(1-r^2)} = \frac{u_{st} \omega_n^2 \cos \varphi}{(\omega_n^2 - \Omega^2)} = \frac{P_0 \omega_n^2 \cos \varphi}{k(\omega_n^2 - \Omega^2)} = \frac{P_0 \cos \varphi}{m(\omega_n^2 - \Omega^2)}$$

$$\frac{\omega_n^2 - \Omega_2^2}{\omega_n^2 - \Omega_1^2} = \frac{(u_{\max})_1 P_{02} \cos \varphi_2}{(u_{\max})_2 P_{01} \cos \varphi_1} = \frac{1.39 \times 9300 \times \cos 174.29^\circ}{3.32 \times 837 \times \cos 8^\circ} = -4.67435$$

$$\omega_n^2 = \frac{\Omega_2^2 + 4.67435\Omega_1^2}{5.67435} \Rightarrow \omega_n = 30.5 \text{ rad/s}$$

$$\xi = \frac{(1-r_{1,2}^2) \tan \varphi_{1,2}}{2r_{1,2}} = \frac{[1 - (\Omega_1/\omega_n)^2] \tan \varphi_1}{2(\Omega_1/\omega_n)} = \frac{[1 - (18.3/30.5)^2] \tan 8^\circ}{2(18.3/30.5)} = 0.075$$

$$\frac{1}{\sqrt{1 + [(2\xi r)/(1-r^2)]^2}} = \frac{1}{\sqrt{1 + \tan^2 \varphi}} = \cos \varphi$$



Ex.7. A Structure having a mass of 100 kg and a translational stiffness of 40000 N/m is excited by a harmonic force with magnitude $F_0=500$ N and an operating frequency of 2.5 Hz. The damping ratio for the structure is 0.10. For the steady-state vibration determine

- (a) The amplitude of the steady-state displacement
- (b) Its phase with respect to the exciting force, and
- (c) The maximum velocity of the response