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One spring element:

beginning @ i @ x
f. vV \ 4 vV \'4 \/

fi
< - .
U; o
Two nodes: i, j g J

Nodal displacements: u; , u; (DoF)
Nodal forces: f; , f;

Spring constant (stiffness): k

X
Initial Configuration .—/\/\/\/\/\/—OH

Final Configuration
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Spring force-displacement relationship: T = kAL - .
T = k(u; — u;) Linear

k =T/AL (> 0) is the force needed to produce a unit stretch Nonlinear
Consider the equilibrium of forces for the spring: k
At node i : fl =-T7T= —k(uj s ui) = kui — ku] AL

Atnodej: f;=T =k(uj—u;)=—ku; + ku;

In matrix form {2} — [—kk _kk] {ZJ‘} {2} ,21 I;z;z] {Z;} or {f} = [k]{u}

= (element) stiffness matrix
u = (element nodal) displacement vector
f = (element nodal) force vector

k;j represent the force f; in the ith degree of freedom due to a unit displacement d;
in the jth degree of freedom while all other displacements are zero.

Notes about the stiffness matrix [K] :

4 It is square, because number of forces is the same as the number of DoF

4 |k|] = 0 = ltis singular & there is no inverse. i.e. can we solve the equation?
QO k is symmetric.

U Diagonals are positive (force produces deformation in its direction)

Spring Assemblage:

@D ® [ @ .
AN NVNAANN = [k k(e
Fy Iey F3 %o F, j —k k 1Y
The local x of the elements is the same as the global x of the assemblage = No

transfdgstion This structure has 3 DoF: uy, u,,u;

For element # (1) (A" [k —kl] u®
FO) Ik kg (D where £(? is the (internal) force
(2) (2) acting on local node i of element
For element # (2) { 3 } k2 _kz]{ } e (e = 1or2)

fz(z) -k, k, gz)
Elements 1 and 2 must remain connected at the common node 3 throughout the
displacement (contlnwty or compatibility requirement), i.e. u(l) = ugz) = uUs

(1): :(1): 5 E
3

Based on the free-body diagrams
2
F, = f(l) Fy = 3(1) +f3( )_ _f1(1) _ 2(2) F, = f(29

() (2) Fz
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Assemble the stiffness matrix for the whole system:

Fl = k1u1 —_— k1u3 F]_ kl 0 —kl uy

F, = kauy — kpus In matrix form: {Fz} =| 0 k, —k, {uz}
F. —k —k k ko |\u

F3 — _klul — kzuz + (kl + kz)u?) = 1 2 1 + 2 2

Or: an alternative way of assembling the whole stiffness matrix:

Element # (1) Element # (2)
Connects 1 — 3 Connects 3 — 2

fl(l) _[ " _kl] u§1) A — [ k> _kz] us?
f3(1) —kl k1 ugl) fz(Z) —k2 k2 ugz)

No transformation because local & global are the same

Global Uy Uz U3 Uy
stiffness matrix {Fl} [ ks —k1] ul} F3) [k —k](us
(Element) F3) — |—ky kq |lus {Fz} T =k, Kk, ]{uz}

“Enlarging” the stiffness matrices for elements 1 and 2, we have

F, ky 0 —ky] (% F, 0 0 0 7(u
F3 _kl 0 k1 us F3 0 —kz kz us 5

Assembling the Total Stiffness Matrix by adding the two matrix equations i.e.
superposition (Direct Stiffness Method)

u, Uy us
' Global : F _k, 590 —k, Uy
stiffness matrix {F2}= L O ~<_ky, ~~—k, {uz}
(Structure) Fy ke, —ky-teq + kx| (us
symmetry

This is the same equation we derived by using the force equilibrium concept.

ky, O -

total or global or system stiffness matrix [K] =| O k, —k,
_kl _kz kl + kz

Boundary and load conditions:

O Mmoo =g |

u; = 0 —> _F—>—>
F Ky F3 ks 2 :
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Without BC , the [K] is singular, it has no invers, we cannot calculate the
displacements from forces, nothing works.

BCs make a structure stable. They stop rigid body movement.

Number of BCs to make [K] non-singular are the number of possible rigid body
movements. w =0
L =

En—T LIl 0 k10
{FZ} = _k2 UZ}
F3 —K1 _kz ki+ ky u3
F; = k1(0) + (0)uy — kyusg
Fy

>
FZ — 0(0) —+ k2u2 = kz'bl3 = {F3} = [ kZ k1 L kz]{ & Fl = —k1u3
F3 = —k1(0) — kauy + (kq + k3) us

this is solvable, and as if we have
removed these row and column

u
The unknowns are {ui} and the reaction force F;

Note: the destroyed row and column correspond to BC=0

EXAMPLE (Spring assemblage)

For the spring assemblage with arbitrarily numbered nodes shown in the figure,
obtain: (a) the global stiffness matrix, (b) the displacements of nodes 3 and 4, (c) the
reaction forces at nodes 1 and 2, and (d) the forces in each spring. A force of
22 kN is applied at node 4 in the x direction. The spring constants are given in the
figure. Nodes 1 and 2 are fixed.

Z\©,

22 kN

4

k1= 200 N/mm ko, = 400 N/mm ks = 600 N/mm
Solution: ~  element # (1) (node 1 —> node 3)
1
@71 _ [ 200 —200
1, o R (U ] [200 20013
{f]} = [—k k ]{uj} element # (2) (node 3 — node 4)

The element stiffness matrices are: < @ 400 _400
[ ] N [—400 400 ] 4

element # (3) (node 4 — node 2)
4 2

@] _ [ 600 —6007 4
- ] —600 600] 2 ¢
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Local axis is the same as global axis no transformation needed.
Applying the superposition concept, we obtain the global stiffness matrix for the

spring system: uq U, Uz Uy
200 0 —200 0 U
k]=| © 600 0 —600 | u,
—200 0 200 + 400 —400 Us
0 —600 —400 400 + 6001 u,
L 200 200 aY ] 2y
e [=) A4 y~pAvav, \v} T
L A) 00 0 o 00 2L
V4 \ = U \SAv v A\ \vavav) 4 >
1F3 —200 0 200 + 400 —400 lus
Fy) . 0 —6pP0 —400 400 + 600] \U4 )

Applying the BC: u; = u, = 0 . Also, we know that F; = 0 and F, = 22000 N

{22800} P —64?(?0 Iggg] {Zi} = uz = 20 mm , u, = 30 mm

Let’s find the nodal forces: F;, = —4000 N

Fy 200 0 —200 0 0 F, = —18000
H(_| o 600 0 —600|) o ( _

Fs(~ |—-200 0 600 —400]|)20 F3 =0

F, 0 —600 —400 1000] 30 F, = 22000 ;

Note that the reactions equal the externally applied force

What are the internal forces?
1 get the local displacements (which is the same as global displacement)

2 use the local stiffness matrix
element # (1)

{[1(1)} - 200 —zoo] {01 1P = —4000 N
- = 1200 200 /120 © ® o0

F @ fl(l) 40O‘O—(:>_/\/\/\/V\/\/\/—()—__—>

element # (2)
(2)
{[3 }_ [ 400 —400] {gg f3(2) — —4000 N f4(2) = 4000 N

@ |~ l—400 400
@) 4000 4000 @18000

4000 @A A A A A A A

element # (3) 22000
3)
4 | _[600 —6007(30 3) — 18000 N @) _ _

{fz(s)} ~ l—600 600 ]{ 0 } Ta 7 = 18990

200 D AAARAANA, Do 2D
- O 10
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EXAMPLE (Spring assemblage)

For the five-spring assemblage shown in the figure, determine the displacements,
reactions, and the internal forces. Assume the rigid vertical bars at nodes 2 and 3
(connecting the springs) remain vertical at all times, but are free to slide or
displace left or right. There is an applied force at node 3 of 1000 N to the right.

k() =500 N/mm k@ = k® =300 N/mm k™ = k®) = 400 N/mm

11

HOMEWORK 2.1

For the spring assemblage with arbitrarily numbered nodes, as shown below, obtain
(a) the global stiffness matrix, (b) the displacements of nodes 3 and 4, (c) the
reaction forces at nodes 1 and 2, and (d) the forces in each spring. A force of
22 kN is applied at node 4 in the x-direction. The spring constants are given in the

figure. Nodes 1 and 2 are fixed
X
' > P=22kN

A O 2 ® [ ¢

kM = 175KkN/m k@ =350kN/m k® =525kN/m

HOMEWORK 2.2 k@
For the spring assemblage shown in the

figure Dbelow, formulate the global X L
stiffness matrix and equations for solution 3
of the unknown global displacement and
forces. The spring constants for the
elements are kW, k@) and k®); P is an
applied force at node 2 (same values as in
Homework 2.1)

Rigid bar
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