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Undergraduate Course

Truss Element (Simple
Bar)

Dr. Bashar Salhab
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MANARA UNIVERSITY

Truss Elementin 1D

Derivation of the Stiffness Matrix for a truss element in local coordinates
Consider a uniform prismatic bar:

Beginning node

— @ D —
fi Uu; EA

Two nodes: i, j

Nodal displacements: u;, u; (DoF)

Nodal forces: f; , f; Equilibrium f; = —f;
Geometric & Material Properties (Element constants): L, EA

Assumptions:

E, A constants

Bar only has axial forces i.e. f;,, = f;;,, = M; = M; = 0 (Truss=Axially loaded)
Transverse displacement is ignored (the relative movement of one node with
respect to the other in y doesn’t create stresses

Loads are applied on nodes

Dr Bashar Salhab https://manara.edu.sy/

-19-




—

ojl_aJl
Element Stiffness: cross-sectional area A4 F
du T
Strain-displ trelation: & = — — AL
p_aceme_n relgtion: e =7~ T |
Stress-strainrelation: 5 = E¢
We have ¢ — du _uj—w; AL (AL elongation) —> L
dx L L &
AL EA - -
— — 2 Wealsohave g =— =
og=Ee=E— 4 > F=—AL T .
oL FL EA
or AL =L A —> F=——AL
EA
hence when AL = 1 (i.e. unit displacement) then the axial stiffness k(= F) = I
EA
k = T The ‘axial’ stiffness of this column
Kinematic response: The local displacements u; of node b , u; of node « , & AL

= u; — u; the elongation of the element (Assuming u; > u; )

Static response: The local forces f; at node b, f; at node -~ , & the internal axial
forces N of the element.

Derivation of the stiffness matrix for a simple bar in local coordinates:
by considering the equilibrium of the forces at the two nodes:

= — (u; —u;

The force/displacement relationships Ji L (u; )

for this element are: EA
fi=——F(uw—u)

=
Element equilibrium equation is ZF" =0 X5 fi=—f

EA EFA
S A

matrix form

Groupingin a —> Lfi} _ i_A[_ll _11] {Z}L}

EA EA
The bar is acting like a spring in this case and we conclude that element stiffness
matrix is: EA[r{ —1
= T[_1 1 ]

Physical Meaning of the Coefficients in k: The jth column of k (here j = 1or 2)
represents the forces applied to the bar to maintain a deformed shape with unit
displacement at node j and zero displacement at the other node

Or symbolically  {f}ax1 = [klaxz {u}ax1

N\

Local known externally Local element Local element unknown
applied loads at the nodes stiffness matrix nodal displacemernits
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Member Stiffness Relations

In matrix stiffnress method of structural analysis, the primary unknowns, the joint
displacements of the structure are determined by solving a system of simultaneous
equations as the following one

P =S X DoF

DoF joint unknown displacement vector
P joint external applied load vector

S the structure stiffness matrix, obtained by assembling the stiffness matrices k of
the individual members , S is used to express the end forces f; of the member in
term of its joint displacements u;

System stiffness matrix [S] by direct method

We can construct the global stiffness matrix for the entire structure by adding the
stiffness coefficients of the local matrix to the global matrix based on the DoF.

Consider a structure such as pin-jointed truss consists of several rod elements:

For 2 linear truss elements with the same EA, L

1 Q @) O 3
L 2[ L
7 L 7 L 7
El t(1): .
ement (1) DoF, DoF, Element (2): DoF, DoF;
KD — E[ 1 —1] DoF; K@ — E[ 1 —1] DoF,
L l-1 11 DoF, L -1 11 por
The DoF corresponds to the index of the global stiffness matrix
Eall -1 0 a0 O 0 Eall —1INQOO
[K] =T —1 1 0 +T 0 1 —1 ZT —1 2 —1
0 0 0 0 -1 1 0 —1 1
If we want to solve the system with BC and force as shown:
R Z P
(F} = K} . {0} ; 5 R,
7
P ﬁ 1 2 3
Y1) wi=o0
ot=—111 2 —1liu, - oy_FEAr2 -—-1y5u2 S —
) —1 1 us} —> {p}=T 15 T lug? P=sbor

We can solve for u, , us
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For 2 linear truss elements with different EA, L

@2 @ [z ®

+ - ->
Lll E1A1 / L2: E2A2
Element (1): o Uy~ Uz Element (2):
1 — 149117 1 -1 Uq (2) — 2 2 1 —1

The system stiffness matrix [K] is obtained by superimposmg the coefficients of
stiffness of the elemental stiffness matrices:

U4 Uz U3
E1A1/Ly —E1A:/Ly 0 t
[K] = |—E1A:/Ly E1A /Ly +E;A,/L, —E,A,/L,| ux
0 —E;A,/L, E,A,/L, Uz

Solution of {F} = [K]{u} cannot be carried out, as [K] is singular, i.e. the structure is
floating in space and has not been constrained.

EXAMPLE (2 linear truss elements)
7 @ 4
® — o
A

L,E2A L, EA V /

Find the stresses in the two bar assembly which is loaded with force P, and firmly
fixed at the two ends, as shown in the figure.

Solution: e o 5 2:
Element (1): o ement (2): DoF 0
( )k(l) X E[ 2 —2] 0 K@ — EA[ 1 —1] DoF
16 k=% DoF L L—

We can assemble the global FE equation as follow 0 DoF O
FiY fgal2 -2 0](%
Far = A —2 3 —1]{Uz2
F3 0 -1 1 Uusz

\ Na J
Load and boundary conditions (BC) are, u; =u3 =0,F, =P [K]
{ﬂ} EATE—2 1(© Deleting the 1st row and column, and the 3™ row
=—|12 3 —[|[yuz¢ andcolumn,we obtain. EA PL

EAr1 -1
r1=—|_ {d} E N
L [ 1 1] =Z[—11 11]{(1}

o=L
A -
Stress in element (1): Stress in element (2):
E E (PL P @ — 2 iy — =5( _i)z_i
0(1)=f(u2_u1)=2(ﬁ_0)=ﬂ g p (s —u2) = (0 =557 3A

which indicates it is in compression
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EXAMPLE Three-bar assemblage

For the three-bar assemblage shown in the figure, determine:

(a) the global stiffness matrix, (b) the displacements of nodes 2 and 3, and (¢)
the reactions at nodes 1 and 4. A force of 15 kN is applied in the x direction at
node 2. The length of each element is 0.6 m. E=2Xx 101 Pa, A=6
X 10~*m? for elements 1 and 2, and E = 1 X 1011 Pa , A = 12 X 10~%m?2 for
element 3. Nodes 1 and 4 are fixed.

15 kN
20 ® /[ © o
) 4 2 &4 O \r/ T
0.6 m —+f+—0.6m —f— 0.6 m —F
- 1.8 m >

HOMEWORK 3.1

For the three-bar assemblage shown in the figure below, determine:

(a) the global stiffness matrix,

(b) the displacements of nodes 2 and 3, and

(c¢) the reaction forces at nodes 1 and 4.

A force of 13 kN is applied at node 2 in the x direction. The length of each
element is 80 cm. E = 200 GPa and A = 6.5 cm?for elements 1 and 2, and E
= 100 GPa and A = 13 cm? for element 3. Nodes 1 and 4 are fixed.

X
>
Z P=13kN v
é] ______________________ — % - - - - - - - - - - _- V/
© @ ® @
¥ 80cm ¥ 80cm ¥ 80cm ¥

10
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HOMEWORK 3.2

Three bars are joined as shown in the figure below. The left and right ends are
both constrained. There is a force of 5N acting on the middle node.
Determine:

(a) the global stiffness matrix,

(b) the displacement of node 3, and

(c) the reaction forces at nodes 1 and 2.

.
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|
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|
|
|
|
|
|
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| ©

=~ — Rigid bar

11

Transformation of vectors of bar elementin 2D
A 2D truss element in the global coordinate system XY and local x’ y’

We need transformation matrix i.e. cosine & sine of your stuff. It transforms
something from one coordinates system to the other.

The angle 6 is defined as positive in the counterclockwise sense.

local global
€ x',y' X, Y
@ u; u;, vj Ui, Vi

1 DoF at node | 2 DoF’s at node
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u’ = ucosf + vsinf = [c 5] I ’
e bl = -1s 90
v’ = —usinf + vcos@ = [—s ] {v} R )
c = cosf s = siné@ transformation matrix

EXAMPLE (Bar element with local axis x’ acting along the element)

The global nodal displacements at node 2 have y x'
been determined to beu, = 2.5 mm and v, 5

= 5mm for the bar element shown in the
figure. Determine the local x displacement at
node 2

60°

Solution:
u’ = ucosf + vsind = [c s] {f}‘} > b = (cos60°)2.5) + (sin 60°)(5) = 5.58 mm

13

Element Global Stiffness Matrix k for truss in 2D

Note that at each member end has 2 DoF and two end forces are needed in global
coordinates to represent the components of the member axial displacement and

axial force, respectively.
Transformation from global to local coordinates
c=cos8 = (X;—X;)/L
s =sin = (Y; — Y;)/L

12 = (x; = x)" + (v — i)

u;? = u? + v}
|:>ul{ =—u; Z_zvl Y
) u} = cu; +sv;

uj =cuy; + sv; il Y

global

’ _
|::> d'zx1 = Toxadyx »
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Similarly, the nodal forces are transformed in the same way
fi = cfjx +sfjy

fiv 4

fi’ — Cﬁx+sfiy}fl =Tf

For local system, a truss does not care about forces perpendicular to bar element

Transformation from local to global coordinates

r ﬁx Cc 0
fix = ¢ f; fjx=ij' : fiy _|s O {fz’}
fiy =s f{ fiy =51y Tix| [0 |
£ B fiv) 10 s
iy £ X f; global local
t4}!'1.36 Z fix :> fax1 = Thxafoxa
Similarly,d = TT d’ &2

Element Global Stiffness Matrix k for truss in 2D x',v/_.~
local {f'} = [k'I{d} <—> ', fj'x/,/’

il _EAr1  —1y1(w
Uit -7 7

Our target: global {f} = [k]{d}

&
<

fix Uu;
&&= ;y = [k]{ )
X J
f}y Y =X, u
Remember: )
u=u;c+v;s uil _rc s 0 01)v " o_
w =+ vy == > {u;}‘[o 0 ¢ S]<uj <D {d'Y = [T1{d}
\Yj Tz[c s 0O o]
rfix 0 0 Cc S
Similarly: {Zﬁ}ﬂg o . 2]<2ﬁ > 1) = 714
{f'}=[K'|{d’} Siv

[T1(} = [KIT1{d}
(F} = M UKITHG <> (Y= —==> [kl =TI [K][T]

We write T in the expanded form so we can invert it o
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Or simply:
Combining Static & kinematic transformations with the Local Element Eq.

_ 7T ’ IM
fax1 = Taxaf2x1 f2x1 = Kaxod2s ox1 & Padyxq

—> faa= T oK) 2 Taxadaxd <> faxa = Kaxadayg

Kaxa = ThoK)oToxa  the global 2D truss element matrix

c O o2 AL —c? —cs
k.. .—|s © E[ e = U . EAl cs ~ 282 | —cs_ _—s-
4710 |\ L -1 1 OOy s L |—=¢c®» —cs! c2 cs
0 s —cs —s? ! cs 5%
k is symmetric and singular
fix c? cs —c? —cs|(%
v\ _ EA|[ ¢ s s?2 —cs —s?|)Vi
fix L|—c?2 —cs c2 CsS Ay
oo —cs —s? cs 52 L

ully

EXAMPLE (Bar element for stiffness matrix evaluation)

For the bar element shown in the figure, evaluate » 4
the global stiffness matrix with respect to the x—y
coordinate system. Let the bar’s cross-sectional area x'
equal to 6 X 10~*m? , length equal 1.2m, and
modulus of elasticity equal 2 X 1011Pa. The angle

of the bar makes with the x axis 30¢°.
30°

Solution:

¢ = 30° C = cos30° = S = sin30° =

=
2

0.75 0433 -—0.75 —0.433

0.25 —-0433 —-0.25 [N
0.75 0433 | m

Symmetry 0.25

(6 X 107%)2 % 10"
1.2

[x] =

8|z
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Computation of Stress for a Bar in 2D

The usual definition of axial tensile stress is axial force divided by cross-sectional area
Simply calculate the local force f’ then divide it by the area A, but you have to decide
if £’ tension or compression.

’ ’ ’ EA - i
U= <> ="~ s .
L 1-1 1 E Vi
0 0 oo o0l Tsoe sy
no_ _Jc s _
@y=miay r1=[g § . 4 o=7 >
EXAMPLE (Bar element for stress evaluation)

For the bar shown in the figure, determine the axial stress. A =4 X 107%*m?, E
= 210 GPa, and L = 2 m. Assume the global displacements have been previously
determined to be u; = 0.25 mm, v;= 0, u, = 0.5 mm, and v,= 0.75 mm

Solution: y [ X
" 0.25 X103 m 2
o wl_ oo
{ } " w0 ]0.50 X103 m ¢ = cos60 = 0.5
V2 0.75 X 103 m s = sin60 = \/3/2 60°
0.25 i
o - 210x10°(-1 —3 1 V3]Joo |, 14 3 3
0.75
EXAMPLE -
For the given truss use the matrix method to: C__ .

1. Construct the Analytical model & determine the global
degrees of freedom. g |
2. For each member construct the global stiffness matrix. i 100 kN
3. Then establish the truss stiffness matrix & solve for the ;
global degrees of freedom.

4. Finally Determine the member internal forces and the

reactions. A =9m?,E = 2417 kPa Ok
f—15 m—+
Solution:
1 Analytical Model & Degrees of Freedom:
Pz, DOFZ

From the Analytical model, the truss has only 2 DoF 4
DoF | & DoF, (the global translations of joint 3).

@

DoF — {DoFl}

DoF, Analytical Model
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U Element Stiffness matrices:
FOrECBIMeN = [ 30L3 2 4%7 6 D301F§ 2 41-)107F€2> 0
L =+/(15—0)2 + (20 — 0)2 = 25 B AN
V( )2+ ( ) mk(l) %75 S5p68 =atza-—=55a8] O
. —313.2 —417.6 i 318.2 417.6 § DoF,;
cos6 = 0.6 sing = 0.8 |—417.6 —356.8 14176 ___556.814 DoF,
EA/L = 870 kKN/m
For element 2: 0 o DoF,  DoF,
L=20m,c=0,s=1 D 0 0 0 8
EA/L = 1088KkN/m (2 Z [P 1p88—HA—=—1088;
i / K D 0 i 0 Qx4 DoF,
[p —1088i 0___1088 1 DoF,
For element 3:
L=15m,c=1,s=0 0 0 DoF; DoF,
EA/L = 1450 kKN/m 1450 [0 —1450—0] 0
RO 0 0 ———0——— o 0
—[450 |0 1450 0| DoF;
. |0 0 ___0_____ 0l DoF,

 Structural (truss) Stiffness matrix S :
1- Member Matrices assembling
DoF; DoF, DoF; DoF,
(313.2 4+ 0 + 1450) (417.6 + 0+ 0) DoF; _11763.2 417.6 DoF;
(417.6 +0+0)  (556.8+ 1088+ 0)| DoF, ~— l417.6 1644.8] DoF;

o

2- Solving for the global degrees of freedom P = Sd

P, = 100c0s60 = 50 kN — 50
£ {—86 6
P, = —-100sin60 = —86.6 kN :
50 1763.2 417.6 DOFl} 0.0434 m
{—86.6 [ 417.6 1644.8 {Don {—0.0637 m
d Member End Displacements & End Forces:
Global Displacement Vector
element 1: Uy 0 0
dayvil _) 0 {_ 0
Uus DoF; 0.0434m
U3 DoF, —0.0637m
element 2: Uy 0 0
a@=Jrat _) 0 {_ 0
Us DoF; 0.0434m
V3 DoF, —0.0637m -
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element 3: s 0 0
U3 DoF, 0.0434m
V3 DOFZ —0.0637m
Local Displacement Vector
0
(1) = TG = “i}= 06708 0 O . — 0
d Td {u’3 [0 0 0.6 08l) 0.0434 {_0.0249}“‘
—0.0637
0
(2 — T@q@ = “2}= 0 1 00 0 = 0
d Liss {u’3 [0 0 0 1] 0.0434 {—0.0637} m
—0.0637
0
(3) = TGP = ”4}= 1.0 0 0 0 S0
¢ T=d {ug [0 0 1 0] 0.0434 {0.0434}‘“

—0.0637

23

Local End Force Vector

O = KOg® = ETA[—11 —11] a'® =870 [_11 —11] {—0.8249} _ [ 21.66

=2 1.66} N

The axial force in member 1: N; = 21.66 kN (C)

The axial force in member3: N; = 62.93 kN (T)

21.66 69.27

EAr1  —1 1 -1 0 69.27
2) — @ g = =42 "(2) — — .
J d L [—1 T ]d 1088 [—1 1 ]{—0.0637} —69.27} kbl
The axial force in member2: N, = 69.27 kN (C) S‘i“s
©)
62.93 = 62.93 «=——o— 50
}
21.66 69.27
EXdY'1 -1 1 —F 0
'3) — KPR g3 = =2 "(3) —
! 62k93 L 5 [—1 1 ]d 4R [—1 1 ]{0.434} \
- { 62.93 } iy
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Global End Force Vector
Fix 0.6 =g :"_i;“: Reactions at Support@
fi 0.8 0 21.66 i 17.33 1 13 kN
D) — T (1) — y = . ; = Q_=:222 R
f Tt Fax 0 o06|le21.66) =) =13 (KN Tt TU11733kN
3y 0 0.8 —17.33
DR Reactions at Support
fax 0 0 0 pportD
/2 1 0| 69.27 ) 69.27
f2 — TT@ @ = J/2v L _ : — ). 6927 { N . 4 0
- 0 of[l-69.27 0 RSV 60.27 k)
- 0 1
fax 1 0
F3) — TTAF'B) — fay 10 O { 62.93
e 0 1 62.93
- 0 0
Reactions at Support @

R, — {—62 )

1733 kN 69.27 kN

EXAMPLE (2D Truss) %

For the plane truss composed of the three '@ @
elements shown in the figure & subjected to a

downward force of 50 kN applied at node 1, | 2

determine the x and y displacements at node 1 3,
and the stresses in each element. E = 200 GPa,

A = 6 X 10~%m? for all elements.
m

Solution:
€= cost — (Xj — Xi)/L
s =sind = (Y;—Y;)/L

Element @(Xi, Y;)—» X;,Y;) |L(m) | 0 c s i_A
0,00 —> @03 3 190° 0 | 1 Jax107
@ (0,00 —»(3)(0,3V2) | 3V2 | 45°/v2/2|y2/2| 4 x 107 x 0.707
@ 0,00—> (@) (0,3 3 10° 1 | o |4x107 26
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For element 1: [kD] =

L = J
Y

4 % 107

0
(2 X106 X 1074 | ¢
[A)

2 X 106 X 107
Eor element 2:  [k®@] = & ) )

3 X 2
\ X J
4 %107 x 0.707
1 0o —h |
11 —4
For element 3: (k] = @x10)6x107)) 0o 0o b (
\ 3 ) —1 0 1l
Y 00 M
4 %107 1
0 1.354 0.354 ||
= (4 X 107
{—50,000} ( )[0.354 1.354 {vl}
u; = 2.59075 X 104 m v = —9.90925 X 107* m
27
w, = 2.59075 X 10~4
11 —_— -4
o = 2219 15 g o pdv = 7990925 X107l _ 66 06 MPa
3 Hy = 0

V2=0

u; = 2.59075 X 104

o _ 2X101 V2 V2 V2 V2 |fvi =-9.90925 X107* | _ 54 4 nMpa
3V2 2 2 2 ]|lus=0
vy = 0
up = 2.59075 X 1074
X 11 I —4
o3 — 2 310 —1 0 1 oldv 09.90925>< Lol
Hq —
V4 = 0

We now verify our results by examining force equilibrium at node 1; that is,
summing forces in the global x and y directions, we obtain:

> F =0 (24.4 MPa)(6 x 10~* mz)% — (17.27 MPa)(6 X 10* m?) =0

S F, =0 (66.06 MPa)(6 X 10~ m?) + (24.4 MPa)(6 X 10~ mz)ﬁ — 50,000 = 0
2
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EXAMPLE (2D Truss with spring support)

the two-bar truss supported by a spring 4
as shown in the figure. Both bars have E )
=210GPa and 4 =5 %X 10"*m?. Bar

one has a length of 5 m and bar two a @ 2
length of 10 m. The spring stiffness is k ==
= 2000 kN/m 5” k=2000kN/m
Solution:
Element 1z o) = 135°, cos) = —/2/2, sing® = 2/2

0.5 —05 —05 0.5
(5.0 X 1074 m?)(210 X 10° kN/m?)| —0.5 05 0.5 —0.5

(] =
I:k ] 5m —0.5 0.5 0.5 —0.5
0.5 —05 —0.5 0.5
1231 Vi "y Va2
1 —1 —1 1
1 1 1 —1
= 105 X 102
—1 1 1 —1
1 —1 —1 1
Element 2: 8¢ = 180°, cos@® = —1.0, sing@(® =0
u v H3 V3
1 0 —1 0O 1 0 —1 O
(5 X 1074 m2)210 X 106 kN/m?) 0 0 0 0 ,| 0 0 0 0
(2] = ! = 105 X 10
[k4<] 50 -1 0 1 0 —1 0 1 0O
0O 0 0O 0 0 0O 0 0O
Element 3: g3 = 270°, cosO® = 0, sing® = —1.0
U Vi U4 V4
0 0 O 0
0 1 0 =l
k3] =20 x 102
: ] 0 0 0O 0
0 —1 0O 1

Applying the boundary conditions Uy = Vo =43 = V3 =y —vq = 0

Fix =0 _102| 210 —105|]=m
Fiy, = —25kN —105 125 |w

u; = —1.724 X 1073 m v; = —3.448 X 1073 m

30
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4, _ 210 X 10° MN/m?
(92 =

We can obtain the stresses in the bar elements

S5m

2 210 X 103 MN/m?

10m

ojlioJl
—1.724 X 1073
[0.707 —0.707 —0.707 0.707] _3-4480X 1073
0
— 51.2 MPa (T)
—1.724 X 1073
10 0 —1.0 0 _3-4480>< 1072 L — _36.2 MPa (C)
0

33

EXAMPLE (2D Truss)

node 1 and the axial force
node 1 while it moves an

For the two-bar truss shown in the figure, determine the vertical displacement of

=210GPa,A=6x10"%

in each element. A force of P = 1000 kN 1is applied at

amount of § = 50 mm in the negative x direction. E
m?for each element.

i 3m |
N

e

P = 1000 kN

d =50 mm |._ 53
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