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Frame Element:

an element that carries axial, shear and bending. Every node in a frame element has
3 DoF y'

@ fim» @

fi’xiull' T/ - \@ Pf’x'u,
’ L f'y,V'

/ &
fiy T |
positive nodal displacements, rotations, forces, and moments

At all nodes, the following sign conventions are used: Moments & Rotations are
positive in the counterclockwise direction. Vertical Forces & Displacements are
positive in the positive y’ direction. Horizontal Forces & Displacements are positive in
the positive x’ direction.

4

Beam Element: y

an element where transversal ) )
loads are significantly larger £/ fim @

than axial or torsional loading,
causing it to be experiencing ) \%}
bending moments and shear L

forces. Every node in a beam r L
element has 2 DoF iy » Vi fiy 2V

4 DoF
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Differential Equation for Euler-Bernoulli beam deflection:
(The Exact Solution)

Euler-Bernoulli beam theory i.e. considering bending deformations only
Y  Plane of

E{ symmetry
g —~——

Prismatic Beam
cross section

Elastic curve (v)

d
Slope of the elastic curve: d_z =tan(®) = @
2%v

Moment deflection relationship: p = E[ﬁ
%

d?v M(x) do | Differential Equation for Euler-Bernoulli Beam Deflection
= a (Euler-Bernoulli beam equation)

dx2 ~ EI  dx
oV  92M 92 0%v 0*v
109 =55 = ox2 =ﬁ(“ﬁ) = () =El (W)

q(x) 0*v
EI — Jx* .

FEM using an approximate solution for continuous beam

Step 1 Select the Element Type

y
4 DoF , ,
fim @
r~ L \@l
f-lgyva, f,y’v,

Step 2 Select a Displacement Function
Step 3 Define the Strain/Displacement & Stress/Strain Relationships

Step 4 Derive the Element Stiffness Matrix and Equations

Determine the shear & bending moment function from the deflection function

0%v 03v
M = FEl— — Epr
92 V =£E1 53
Determine the stress components from the moment and shear functions
My Vs
Ox = ——— Txy = 7p 4

I
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Selecting a deflection Function
By integrating the equation %=g%:: we get the elastic curve equation (v(x))

resulting in 4 constants that can be obtained from BC

For constant EI over the length L , and only nodal forces and moments (i.e. no
distributed load between nodes as in FEM which assumes that loads are applied at
nodes), we have: e

W 0 By integrationwe get: v = ay + a;x + a,x? + azx3

So we assume the displacement function in the form: v(x) = ag + a;x + a,x? + azx>

The choice of a cubic displacement function is appropriate because:

Q0 There are 4 DoF & 4 BC, no more than 4 constants in the assumed displacement
function can be determined.

0 The loads are applied only at the element nodes, the bending moment varies

; a2 T
linearly. Hence 61;(296) is linear.

a truss has 2 DoF which are the nodal displacements (u4,u,), thus we choose the

displacement function u = ag + a1 x
5

Shape functions of continuous beam element

4 T v(x) = f(vi,v), i, 8, x)
v(x =0) =v;

v; v
v(x =L) = v ‘ T T 3
dv
Subjected to BC:< — = Q; )
, o, (o ¢ )
x=0 [ | X
dv ?; I L >|
— =0Q; :
\_ dx »; I Beam element nodal displacements

shown in positive directions

Application of the BC : v(x) = ag + a;x + ax? + azx>

v(0) = v; = a, v(L) = v; = ap + a1L + ayL? + a3L?
dv dv o
= Tfi=a | =9 = a1 +2aL+3asl
x=0 x=L
[ ag =9
Solving them simultaneously to Qg =V

obtain the coefficients in terms of ——> <

3 1
=" (v, — v 35C (20;
the nodal degrees of freedom as: dy =1z (W2 — Ya R (20; + @)

2 1
\ as =§(U1—vz)+ﬁ(¢i+®j)

6
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substituting into v(x)

3 2x2 2x* x® x4 2% xR0 x2
v(x) = 1_L2 +F vi+\|x— 2 +ﬁ D; + 1z I3 v + 2 L (Z)j
Which is of the form: v(x) = Ny (x)v; + N, (x)D; + N3(x)v; + Nu(x)D;
Vi

o,
In matrix form: v(x) ={N;y N, N3 N,} v]l- =Nd

@;

1
N, = = (2x3 — 3x?%L + L3®) )

Ny = 1 (x3L — 2x2%L? + xL3)
L3 > N;, N,, N3, and N, are called the
shape functions for a beam element

N, = = (—2x3 + 3x2L)
3_L3( X X

1
aeN=r. 37 _ 2712
N4—L3(xL x“L%) .

For the beam element, N; =1 when evaluated at node 1 and N; = 0 when
evaluated at node 2. Because N, is associated with @;, we have, from the second
of Eqgs. (AN, /dx = 1 when evaluated at node 1. Shape functions N3 and N, have
analogous results for node 2. 7

Beam Stiffness Matrix

0%v fimn, @'
M = Elﬁ
V = El—a3v
y ax3 4 I ' &
Y ¥ y: U
For Continuous Beam elements: | X X'
g =d’ ﬁ O
F=f g d e . [m] = e &
. ® ®
0°v(0) EI
fiy=V=El— == §(12vi +6L0; —12v, + 6L0 )

9%v(0) EI
fim = —M = —El ——— = — (6Lv; + 4L?®; — 6Lv, + 2L?® )
Sy L > — f'=Kk'd’
93v(L) EI -
= —(—12v; — 6L®; + 12v, — 6L% )

fiy="V=il—HGs =1
0%v(L) EI
0x2 I3
fiy 12 6L —12 6L 1 (VY

P fom | _Ell 6L 412 —6L 212|)%:
v

(0)

=M =EI 6Lv; + 2120, — 6Lv. + 4120
_/

L

fy ([ 13]|-12 —6L 12 —6L
fm 6L 21> —6L 4l2
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Fixed End Moments f

If we have loads between nodes, then: f' = k' d’ + f;
using work-equivalence method to obtain £ :

Waistributea = j q(x)v'(x)dx’ Waiscrete = fim @i + 'm®’ +fL’y v/ +f,y L
y y 17 ’
? q(x") i
— ‘//r"ﬁr\' ! i .0 Lo « B
]———,’ O - pr
B T j@® [Cm ] © :
= L -]
]cLIy , vl’ L ’ , o'
[ |
' ET = constant '
If we take uniformly Distributed Loading g: Z l l l l q l ’g
2 4 L 2
. o % ’ qLZ
equivalent nodal forces: fg = % 12 53
_qL? 12 C\ I
12
qL/2 qL{2

-L/2 f
2pL ) 2pL pabz (i _‘_E) L
9 9

k— L/3——sfe—L/3——fe—L/3—] b
Pb2(L + 2a )/L3 PaZ(LT+ 2b)/L3

_va<a+b>(§_;;g/ 1 F e wggﬁmw
L

| ) h. .
I a ) 4 T

q
2 4 2
qL? qL? ( )MB,,
20 30

2 L .
—a —»‘ 14 (41 — 3a) My = — Mgy = ﬁ(ﬂ — (2l - a))
T F—a—l b I
e V=
N uA
12L2(6L2 8aL +3a”) Mb(b —2a) M@2b-a)
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EXAMPLE (Continuous beam)

Determine the reactions and the

member end forces for the three-
span continuous beam using the
matrix stiffness method

80 kN 24 KN/m
PV ey
6 m |4m|" 0m | 5m

EI = constant

Solution:
! ‘ Y DoF; DoF,
From the analytical model the two P N\
unknown degrees of freedom, DoF; - ony, - ony —
& DoF,, the two rotations at nodes ' @
283 @ @ ©)
12 6L —12 6L
. . , _Ell 6L 412 —6L 2L
The element stiffness matrix: K = Zl-12 —eL 12 .—6L
6L 2L? —6L 412
4 ! !
Jiy 12 6L -12 e6L](% Jivo
fom \ _EIl 6L 412 —6L 2L2|)9i|  [fimo
i L3|-12 —6L 12 —6L| |V’ five
. 6L 21> —6L 412]|g’ £ .
0 0 0 DoF,
Element (1): using L _ooli2 006 —0012 00671 O
= 10m & the fixed-end 1) — K@ = g7 06 9.4 006 02 0
forces from the table =0012 =006 0082 —=006f O
0.06 o2 —ops 0.4 | DoF
fimo = 76.8 BOKN  fimo = +115.2 fiyo 28.16 0
C% ) fimo 76.80 0
. C1] fiyo 51.84 0
@ @ fro —115.2) DoF;
fiyo = 28.16 fiyo = 51.84
. 0 DoF; 0 DoF,
Element (2): using L ;QnglZ 0.06 obiz 0061 O
= 10 m & the fixed-end ; oloe 0.4 —0lo6é 0.2 DOFl
forces from the table K® = Kk'® = El olo12 0-06—0-d12 0-06 0
i OIO6 0.2 —olo6 0.4 | DoF,
r 900 24 kN/m ,
fimo ( * f'mo = —200 fi,yo 120 0
2 imo|l . ) 200 ( DoF;
£l =120 T Tf’yo = 120 i —200/ Dok

12
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Element (3): using L
= 5 m & the fixed-end
forces from the table

K3 = K=y

: fi) oy o

ﬁ Z fimo _)O0( DoF;

® ] @& T[98
moO

Joint Load Vector P : Since no external moments are applied to the beam at joints
2and3: P=0

1 2 1 2
(0.4 +0.4) 0.2 1 08 021 (-115.2+200) (1 84.8) 1
S=EI = EI Pf= =
0.2 (04+08) |2 02 12 |2 =200 2 -200 2
5 A _ —84.8) _ 0.8 0.2 D0F1} DoF; 1 (—154.09
P —P; =S DoF ——>{ 200 j=E1 [0.2 1.2] {Don —> {DoFZ} = _1{ 192.35

13

Member End Displacements and End Forces f ' =k'd +f;
3 4598 80kN 176.84
Element (1): @1 g 8 ) 8 ( . I ]
o . v, (0 0 EI) o I@ [1] @I
?,) 1 DoF —154.
° ! >4.09 18.91 61.09
fO = g =
0.012 0.06 —0.012 0.06 0 28.16 18.91 ) kN
_ g7| 006 0.4 —0.06 02 |1 0 +] 7680 ( _ ) 4598 (kN.m
—0.012 —0.06 0.012 —0.06|EI 0 51.84 61.09 ( kN
0.06 0.2 —0.06 0.4 —154.09 —115.2 —176.84) kN.m
Element (2): 2\ 0 0 0 176.83 24 kN/m_ 153.88
vs(0=) 0 (TEI)] o ® ®
?3) 2 DoF, 192.35
(@ _ @~ 122.3 117.7
0.012 0.06 —0.012 0.06 0 120 122.3 \ kN
_ g| 006 0.4  —0.06 02 |1 )-154.09(_ ) 200 ( _) 176.83 (kN.m
—0.012 —0.06 0.012 —0.06|EI 0 120 117.7 ( kN
0.06 0.2 —0.06 0.4 192.35 —200 —153.88/kN.m
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Element (3): Y3\ 0 0 0 153.88 76.94
D3 ( 2 DoF 1 )192.35 ( ———‘>
'(3) = d(B¥axd 73 — 2\ _ .
d - v, (0 0 EI) © ©) 11 @
@4) 0 0 0
(@) _ O o 46.16  46.16
0.096 0.24 —0.096 0.24 0 0 46.16 | kN
pp| 024 08 —024 04 |1)19235 40 153.88 ( kN.m
—0.096 —0.24 0.096 —0.24|EI 0 0 —46.16 ( kN
0.24 04 —024 08 0 0 76.94 ) KN.m

Support Reactions:

- (A3} or (5305 (528} = (7297

ro= {# %+ ) = {26 "®= {re0a k)

45.98 kN-m SOlkN 24 kN/m 76.94 kN.m
| I
© @ © @,

T A 3 1
15

18.91 kN 183.39 kN 163.86 kN 46.16 kN

153.88
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