البرمجة 3
التمرين الأول
مقدمة:											deepCopy
 تعتمد لغة Java على بناء البرنامج على شكل أصناف Classes تحتوي على مجموعة من الطرائق Methods وحقول البيانات. يبدأ البرنامج باستخدام الكلمة المحجوزة التي تعبر عن آلية الدخول إلى الصنف Public ومن ثم كلمة محجوزة أيضاً وهي تعريف الصنف Class ومن ثم اسم الصنف وهو اختياري يفضل أن يعبر عن مهمة الصنف ويحبز أن يبدأ بمحرف كبير وفي حال أكثر من كلمة يجب أن تبدأ كل كلمة تالية بمحرف كبير ويضمن شروط تسمية المتغيرات المعروفه. يلي ذلك فتح قوس من نمط { يعني بداية جسم الصنف وتعريف الحقول والطرائق ضمن الصنف والتي يمكن أن تكون طريقة الوصول إليها من أحد الأنماط Public, Private, Protected. أو النمط الافتراضي معرف على مستوى الحزمة مع تعريف نواع البيانات المستخدم.
public class Rectangle {
private double length;
private double width;
}
ضمن الصنف يمكن لنا تعريف مجموعة من الطرائق كما يلي:
المنهج الباني Constructor بدون وسائط:
يبدأ تعريفه بنمط الولوج إليه (وعادتاً Public) ولا يتم تمرير أي وسطاء إليه وله نفس اسم الصنف, هنا تم طلب طباعة العبارة المحددة فقط ضمن هذا الباني. القيمة الافتراضية للمتحولات في حال عدم الاسناد لها هي قيم صفرية للمتغيرات الأولية ماعدا المنطقية لها القيمة false والمراجع لها القيمة null.
public Rectangle ()
	{
		System.out.println("default constructer");
	}
للتأكد من ذلك سنقوم بإنشاء صنف java جديد باسم RectangleTest ومن ثم سنطلب الباني منه كما يلي:
public class RectangleTest
{
	/**
	 * @param args
	 */
	public static void main(String[] args)
 {
		// TODO Auto-generated method stub
		Rectangle r1= new Rectangle();
		System.out.println("\nlength= "+ r1.getLength() +
 " width= "+ r1.getWidth());
		//r1.length=11;
		
	 }// end main
} // end class RectangleTest	

عند التنفيذ سيكون الخرج عبارة عن الدخول إلى العنصر الباني وطباعة العبارة والقيم الافتراضية الصفرية لقيم الطول والعرض.
default constructer

length= 0.0 width= 0.0

الآن يمكن لنا اسناد قيم لهذه الحقول باستخدام إجرائيات set لاسناد قيمة للحقول وضبط هذه القيم. وget لاستعادة القيم. نعود إلى صنف Rectangle ونقوم بالتعديل بإضافة إجرائيات set وget لكل من الطول والعرض كما يلي:
public void setLength(double le)
	{
		if(le>0) length=le; else length=1;
	}

public void setWidth(double wi)
	{
		if(wi>0) width=wi; else width=1;
	}
public double getLength()
	{
		return length;
	}
public double getWidth()
	{
		return width;
	}

ثم يتم طلب هذه الإجرائيات في RectangleTest كما يلي:
r1.setLength(22);
		r1.setWidth(11);
		System.out.println("\nRectangle after setting");
		System.out.println("length= "+ r1.getLength() +
 " width= "+ r1.getWidth());

		//The length and width cannot be accessed by
// private identifiers
		//System.out.println("length= "+ r1.length +
// " width= "+ r1.width);
بعد التنفيذ سيصبح لدينا الخرج المعدل التالي:
default constructer

length= 0.0 width= 0.0

Rectangle after setting
length= 22.0 width= 11.0

المنهج الباني مع وسائط:
لاحظنا في المرحلة السابقة أننا لم نقم بإدخال إية وسائط للباني وانما اعتمدنا على set لتمرير قيم الحقول. يجب تعريف هذا الباني بنفس الاسم السابق (أي اسم الصنف) ولكن مع تمرير وسائط (في هذه الحالة تعبر عن العنصر وهو مستطيل وبالتالي سنقوم بتمرير الطول والعرض) ويمكن تعريف أي باني آخر مختلف يمكن طلبه من البرنامج الرئيسي. ضمن البرنامج تم ضمان أن يكون الطول والعرض أكبر من الصفر منعاً من اي إدخال خاطئ للمتحولات. نقوم بإضافة الإجراء التالي لصنف Rectangle

public Rectangle (double l, double w)
	{
		System.out.println("constructer with argument");
		if(l>0) length=l; else length=1;
		if(w>0) width=w; else width=1;
	}

من ثم في صنف الاختبار نقوم بالتعديل التالي:
public class RectangleTest
{
	/**
	 * @param args
	 */
	public static void main(String[] args)
 {
		// TODO Auto-generated method stub
// 1 call Constructer with argument
		Rectangle r2= new Rectangle(30, 20);
		System.out.println("length= "+ r2.getLength() +
 " width= "+ r2.getWidth());
		
		//1 call Constructer with argument
		
	 }// end main
} // end class RectangleTest	
بعد التنفيذ وكما نلاحظ قمنا بتمرير قيم الحقول مباشرة للباني وهي 30 للطول و20 للعرض وسيكون الخرج:
constructer with argument
length= 30.0 width= 20.0
حساب محيط ومساحة المضلع:
على فرض أننا نرغب ببناء طريقتان تقومان بحساب المحيط والمساحة الخاصة بالمستطيل عندها يمكن تعريف طريقاين تابعتان لنفس الصنف rectangle والتي سيتم طلبها لاحقاً من صنف الاختبار RectangleTest وكما نلاحظ لا تحتاجان لتمرير وسائط وإنما سيتم تنفيذ العمليات واستيراد الطول والعرض بصورة مباشرة. ضمن صنف Rectangle سنضيف الإجراءات التالية:
// perimeter of a Rectangle
public double rectanglePerimeter()
	{
		return (length + width)*2;	
	}
//area of a Rectangle
public double rectangleArea()
	{
		return length * width;	
	}
ثم نقوم بإضافة السطر التالي إلى صنف RectangleTest :
System.out.println("perimeter= "+ r2.rectanglePerimeter() +
 "\narea= "+ r2.rectangleArea());

إي أننا طلبنا في صنف الاختبار توابع حساب المحيط والمساحة من صنف Rectangle.عند التنفيذ سيكون الخرج:
constructer with argument
length= 30.0 width= 20.0
perimeter= 100.0
area= 600.0
التمرير بالقيمة:
تمرر القيم الأولية بالقيمة إلى الإجرائية المطلوبة وتسمى هذه الطريقة التمرير بالقيمة ولو قامت الإجرائية بتعيير القيمة حيث سيكون تنفيذ العملية لحظياً ومن ثم إعادة القيمة سنجد أن التعديل كان في الإجرائية فقط والقيمة الأصلية بعد التنفيذ لن تتعير. نقوم بإضافة الإجراء التالي إلى صنف Rectangle.
//2 Java passes all arguments by value. It is called by value
public void setLengthWithChange(double le)
	{
		if(le>0){length=le+100; le=le+100;}
		else {length= 100;le=99;}
	}
// 2 end WithChange call by value //

ونعدل على صنف التنفيذ:
public static void main(String[] args)
 {
	//2 Java passes all primitive data type arguments by value
		// 2 start With Change length value//
		
		 System.out.println("2 === start call by value,
We send a copy of the value2=== ");
		 Rectangle lorv=new Rectangle();
		 double rv=21;
		 System.out.println("rv before sending= "+ rv);
		 lorv.setLengthWithChange(rv);
		 System.out.println("rv after calling in method = "+
 lorv.getLength());
		 System.out.println("rv after return = "+ rv);
		 System.out.println("2 === end call by value 2=== ");

		 //	 2 end With Change length value	 //
		
	 }// end main
} // end class RectangleTest

ونلاحظ الخرج:
2 === start call by value, We send a copy of the value2===
default constructer
rv before sending= 21.0
rv after calling in method = 121.0
rv after return = 21.0
2 === end call by value 2 ===

وكما نلاحظ أن القيمة الأصلية كانت 21 وبعد طلب التمرير بالقيمة أصبحت 121 وعند طلب القيمة بعد الخروج من إجرائية التمرير بالقيمة فقد عاد الطول إلى قيمته الأصلية ولم يتم الحفاظ على التعديل.

التمرير بالمرجع:
يمكن تمرير القيم كعناصر تابعة للصنف الأساسي وهنا تحتفظ هذه العناصر بقيمها الجديدة من دون أية تغييرات. لاحظ ماتم تمريره للطريقة وهنا ورثنا مرجعاً من الصنف وليس متحول من نمط double مثلاً.
التعديل المطلوب على الصنف Rectangle
//3 the value of the reference variable is passed. It is called by reference //
public void changeOb(Rectangle ob)
	{
		ob.length=77;
		ob.width=55;
	}
// 3 end changeOb call by reference//

التعديل المطلوب على صنف RectangleTest:
// 3 start call by object//
System.out.println("\n3_ start call by object, We are
 sending the object reference 3__");
Rectangle oRR=new Rectangle();
Rectangle mySendRec=new Rectangle(100,50);
System.out.println("object before sending= " +
	"("+ mySendRec.getLength()+", "+mySendRec.getWidth()+")");
oRR.changeOb(mySendRec);
System.out.println("ob after calling in method = " +
	"("+ mySendRec.getLength()+","+ mySendRec.getWidth()+")");

System.out.println("3 _end called call by object 3_");

//	 3 end call by	object //
التنفيذ:
3_ start call by object, We are sending the object reference 3__
default constructer
constructer with argument
object before sending= (100.0 , 50.0)
ob after calling in method = (77.0 , 55.0)
3 _ end called call by object 3_
وكما نلاحظ فقد تم الاحتفاظ بالقيم الجديدة السبب أنه تم التغيير على مكان وجود القيم ضمن الذاكره وبالتالي تغير الأصل كذلك.

استعادة مرجع object.
سنقوم هنا فقط بالتعديل على صنف الاختبار RectangleTest كما يلي وسنقوم بطلب بارسال كائنين إلى الطريقة وتقوم بجمع الحقول المتقابلة وإعادة الكائن الناتج objects وهنا سيعاد مرجعه.
// 4 Returns an object that represents the sum of the two objects//
//start method return reference of object
 System.out.println("\n4+++ start call by two object 4+++ ");
 Rectangle oR1=new Rectangle(22,11);
 Rectangle oR2=new Rectangle(15,7);
 Rectangle oR3=new Rectangle();
		
 System.out.println("object1 before sending= " +
		"("+ oR1.getLength()+" , "+ oR1.getWidth()+")");
 System.out.println("object2 before sending= " +
		"("+ oR2.getLength()+" , "+ oR2.getWidth()+")");
 System.out.println("object3 before sending= " +
		"("+ oR3.getLength()+" , "+ oR3.getWidth()+")");
 oR3=oR3.obRet(oR1 , oR2);
 System.out.println("object3 after sending= " +
		"("+ oR3.getLength()+" , "+ oR3.getWidth()+")");

 System.out.println("4+++ end called call by object 4+++ ");
		
// 4 end method return reference of object //

التنفيذ:
4+++ start call by two object 4++++
constructer with argument
constructer with argument
default constructer
object1 before sending= (22.0 , 11.0)
object2 before sending= (15.0 , 7.0)
object3 before sending= (0.0 , 0.0)
default constructer
object3 after sending= (37.0 , 18.0)
4+++ end called call by object 4+++
سيتم إعادة العملية والقيام بجمع الأبعاد على سبيل المثال, سيتم التعديل على صنف RectangleTest كما يلي:
// 41 start method return reference of object //

	System.out.println("\n41 ##++ start call by object 41##++ ");
			
// We call the add method from an object to add another object // to it, so we need to take the added object
	 Rectangle oAR1=new Rectangle(22,11);
	System.out.println("object1 before sending= " +
 		"("+ oAR1.getLength()+" , "+ oAR1.getWidth()+")");
System.out.println("object2 before sending= " +
 		"("+ oR2.getLength()+" , "+ oR2.getWidth()+")");
	 oR3.setLength(10); oR3.setWidth(9);
	 System.out.println("object3 before sending= " +
 		"("+ oR3.getLength()+" , "+ oR3.getWidth()+")");

	 oR3=oAR1.obRet41(oR2);// oR2(15,7)
			
 System.out.println("object1 after sending= " +
		"("+ oAR1.getLength()+" , "+ oAR1.getWidth()+")");
	 System.out.println("object3 after sending= " +
		"("+ oR3.getLength()+" , "+ oR3.getWidth()+")");
		
	System.out.println("41 #++ end called call by object41#++ ");
	// 41 end method return reference of object //
وبعد التنفيذ سيكون لدينا:
41 ##++ start call by object 41##++
constructer with argument
object1 before sending= (22.0 , 11.0)
object2 before sending= (15.0 , 7.0)
object3 before sending= (10.0 , 9.0)
default constructer
object1 after sending= (22.0 , 11.0)
object3 after sending= (37.0 , 18.0)
41 ##++ end called call by object 41##++
يمكن لنا أن نستخدم اثناء التنفيذ عبارة this, تسمح this هنا بمنع الالتباس في البرنامج في حال التعامل مع نفس الاسم للحقل حيث يتم معالجة القيمة الحالية فقط. نقوم بالتعديل على Rectangle كما يلي:
// 41 start method return reference of object //
	public Rectangle obRet41(Rectangle ob2)
	{
		Rectangle ob341=new Rectangle();
		ob341.length=this.length + ob2.length;
		ob341.width=this.width + ob2.width;
		return ob341;
	}
// 41 end method return reference of object //
طباعة القيم من الطريقة قبل إعادة المرجع سنجدها نفس القيم بعد الإعاده.
	// 42 start method return reference of object //
 System.out.println("\n42 #+# start call by object 42#+# ");
 System.out.println("Print the result directly before return " +
	 		"("+ oAR1.obRet41(oR2).getLength()+" , "+
 oAR1.obRet41(oR2).getWidth()+")");
 System.out.println("42 #+# end called call by object 42#+# ");
 // 42 end method return reference of object //
وبعد التنفيذ سيكون لدينا:
42 #+# start call by object 42#+#
default constructer
default constructer
Print the result directly before return (37.0 , 18.0)
42 #+# end called call by object 42#+#
طريقة لتفحص تساوي كائنين:
تعيد هذه الطريقة متحول منطقي, true في حالة التساوي وfalse في حالة عدم التساوي وتقارن الحقول المتقابلة من الكائنين.
نقوم بالتعديل على صنف Rectangle كما يلي:
// operator == //
public boolean isEqual(Rectangle r2)
	{	if(this.length==r2.length && this.width == r2.width)
			return true;
		else return false;
	} //end operator ==//
عندما يتم انشاء كائنين eR1, eR2 ومن ثم تتم إختبار التساوي لكل من eR1, eR2 بسبب عدم تساوي المرجعين.
	 // 5 start operators == //
	 System.out.println("\n5 == start operators 5 == ");
	 Rectangle eR1=new Rectangle(122,55);
	 Rectangle eR2=new Rectangle(22,11);
			 if(eR1==eR2)
			 	System.out.println(" eR1 equal eR2 ");
			 else
				 System.out.println(" eR1 not equal eR2 ");
	System.out.println("5 == end operators 5 == ");
			///// References have been compared
			// 5 end operators == //
بعد التنفيذ سيكون لدينا:
5 == start operators 5 ==
constructer with argument
constructer with argument
 eR1 not equal eR2
5 == end operators 5 ==
الآن سنستخدم طريقة نسب مرجع الي مرجع أخرى كما يلي:
// 51 start operators = //
System.out.println("\n51 == start operators 51 == ");
eR2=eR1;
if(eR1==eR2)
		System.out.println(" eR1 equal eR2 ");
	else
		System.out.println(" eR1 not equal eR2 ");
System.out.println("object1 before sending= " +
	 		"("+ eR2.getLength()+" , "+ eR2.getWidth()+")");
								 	
System.out.println("51 == end operators 51 == ");
///// The first reference has been copied to the second
// Both objects point to the same address
// 51 end operators = //
وبعد التنفيذ:
51 == start operators 51 ==
 eR1 equal eR2
object1 befor sending= (122.0 , 55.0)
 51 == end operators 51 ==

طريقة 3: باستخدام دالة isEqual() السابقة التي تقارن الحقول المتقابلة مع بعضها البعض:
// 52 start method testIsEqual //
System.out.println("\n52*=*= start test method IsEqual52*=*= ");

Rectangle r=new Rectangle(222,111);
Rectangle rr=new Rectangle(22,11);
					 	 	
	 if(r.isEqual(rr))
		 System.out.println(" r is equal r ");
		
	 else
		 System.out.println(" r is not equal rr ");
System.out.println(" 52=*=*= end test method IsEqual 52*=*= ");
///// Similar fields have been compared
// 52 end operators == //
وبعد التنفيذ:
52*=*= start test method IsEqual 52*=*=
constructer with argument
constructer with argument
 r is not equal rr
 52=*=*= end test method IsEqual 52*=*=

تغيير قيم الكائن الأول ليصبح مساوي للثاني
// 53 start method testIsEqual //
System.out.println("\n53*=*= start test method IsEqual53*=*= ");

Rectangle r0=new Rectangle(22,11);
Rectangle rr0=new Rectangle(22,11);
					 	 	
	 if(r0.isEqual(rr0))
		 System.out.println(" r0 is equal rr0 ");
		
	 else
		 System.out.println(" r0 is not equal rr0 ");
System.out.println(" 53=*=*= end test method IsEqual 53*=*= ");
///// Similar fields have been compared
// 52 end operators == //
وبعد التنفيذ:
53=*=*= start test method IsEqual53=*=*=
constructer with argument
constructer with argument
 r0 is equal rr0
53=*=*= end test method IsEqualc 53 =*=*=
[bookmark: deepCopy][bookmark: _GoBack]نسخ الحقول المتقابلة فيما بينها وفق طريقة النسخ العميقdeepCopy:
نقوم بالتعديل على صنف Rectangle وإضافة الإجراء التالي:
// method Deep copy //
public Rectangle deepCopy(Rectangle r2)
	{
		this.length=r2.length;
		this.width = r2.width;
		return this;
	}// this
ومن ثم سنطلب هذا الإجراء من صنف التنفيذ RectangleTest كما يلي:
// 54 start method Deep copy //
System.out.println("\n54**= start test method Deep copy54**= ");

Rectangle rr1=new Rectangle(222,111);
Rectangle rr2=new Rectangle(22,11);
					
rr2.deepCopy(rr1);
System.out.println("object1 after sending= " +
 		"("+ rr1.getLength()+" , "+ rr1.getWidth()+")");
System.out.println("object1 after sending= " +
 		"("+ rr2.getLength()+" , "+ rr2.getWidth()+")");
System.out.println("54 ***= end test method Deep copy54***= ");
						
// Similar fields have been compared
// 54 end operators == //
بعد التنفيذ سيكون الخرج:
54 ***= start test method Deep copy54***=
constructer with argument
constructer with argument
object1 after sending= (222.0 , 111.0)
object1 after sending= (222.0 , 111.0)
54 ***= end test method Deep copy54***=
طريقة 2:

استخدام الباني الناسخ:
public Rectangle(Rectangle suOb)
	{
		this.length=suOb.length;
		width=suOb.width;
	}
في التابع الرئيسي للاختبار سوف نكتب:
// 55 start copy constructor //
System.out.println("\n55**= start test copy constructor55**= ");

Rectangle rrr1=new Rectangle(222,111);

Rectangle rrr2=new Rectangle(rrr1);
					
System.out.println("object1 after sending= " +
 		"("+ rrr1.getLength()+" , "+ rrr1.getWidth()+")");
System.out.println("object2 after sending= " +
 		"("+ rrr2.getLength()+" , "+ rrr2.getWidth()+")");
System.out.println("55**= end test copy constructor 55**= ");
// Similar fields have been compared
// 55 end copy constructor /
بعد التنفيذ أيضاً سيتم نسخ القيم:

55**= start test method copy constructor55**=
constructer with argument
object1 after sending= (222.0 , 111.0)
object2 after sending= (222.0 , 111.0)
55**= end test method copy constructor 55**=
انتهى التمرين الاول

التمرين الثاني استخدام this مع الباني والمنهج setSalary
/*
 * Click nbfs://nbhost/SystemFileSystem/Templates/Licenses/license-default.txt to change this license
 * Click nbfs://nbhost/SystemFileSystem/Templates/Classes/Class.java to edit this template
 */
package fireststatic;

/**
 *
 * @author hp
 */
[bookmark: Person]public class Person {
 private String name;
 private int age;
 private String phoneNumber;
 private double salary;
 private double bunos =500; //Assume default value =500
 private boolean SyrianNationality;
 private char gender;

public Person() {
 System.out.println("default constructer run \"super Class\" "); }

public Person(String name , int a , String p)
 {
 //We assume that the passed value has the same name as the data field name
 this.name=name;
 age=a; phoneNumber = p; }

public Person(String n , int a , String p , double s ,
 double b , boolean sy , char g) {
 this(n , a , p);
 salary = s;
 bunos = b;
 SyrianNationality = sy;
 gender = g; }

[bookmark: setSalary]public void setSalary(double s){ salary = s;}

 public void setSalary(double s , double b){
 this.setSalary(s); bunos = b; }

 @Override
//	It is useful to write @Override because toString() is in the superclass //	java.lang.Object)
 public String toString(){
 return (" Name "+ name + "\n Age "+ age+"\n PhoneNumber " +
 phoneNumber + "\n Salary " + salary +"\n Bunos "+
bunos + "\n SyrianNationality " +SyrianNationality + "\n Gender " + gender + "\n");
 }

// public void printInfo(){
// System.out.println(" Name "+ name + "\n Age "+ age + "\n PhoneNumber " +
// phoneNumber + "\n Salary " + salary +"\n Bunos "+ bunos +
// "\n SyrianNationality " +SyrianNationality +"\n Gender " + gender + "\n");
// }
}

/*
 * Click nbfs://nbhost/SystemFileSystem/Templates/Licenses/license-default.txt to change this license
 * Click nbfs://nbhost/SystemFileSystem/Templates/Classes/Class.java to edit this template
 */
package fireststatic;

/**
 *
 * @author hp
 */
import java.util.Scanner;
public class PersonTest2025 {
 public static void main(String[] args){
 Person per1 = new Person();
 System.out.println(per1);
 // per1.printInfo();
 Person per2 = new Person("ahmad" , 20 , "41 22222222");
 System.out.println(per2);
 // per2.printInfo();
 Person per3 = new Person("adam" , 22 , "43 11111111" , 3000 , 500 , true , 'M');
 System.out.println(per3);
 // per3.printInfo();
 System.out.println("input String");
 Scanner input=new Scanner(System.in);
 char str2=input.nextLine().charAt(3);
//The entry must be at least four characters
 System.out.println(str2);

}
}

	default constructer run "super Class"
 Name null
 Age 0
 PhoneNumber null
 Salary 0.0
 Bunos 500.0
 SyrianNationality false
 Gender
	Name ahmad
 Age 20
 PhoneNumber 41 22222222
 Salary 0.0
 Bunos 500.0
 SyrianNationality false
 Gender

	Name adam
 Age 22
 PhoneNumber 43 11111111
 Salary 3000.0
 Bunos 500.0
 SyrianNationality true
 Gender M

input String
asdfgh
f

1

