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Shear Torsion Stability
External forces act at 90° in opposite External forces apply a twisting force Not a force; when an element buckles
or falls before it breaks due to forces
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Determine the normal force, shear force, and bending dcols

moment acting just to the left, point B, and just to the rigli:"’tL",L"":'J"|

point C, of the 6-kN force on the beam in Fig.
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Example

Determine the normal force, shear force, and bending moment
at point C of the beam in Fig.
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Moment of Inertia OF Cross Sections
Examples (cont.)
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Example 3 Py

Determine the moments of inertia for e
the cross-sectional area of the member
shown in Fig. about the x and y

centroidal axes.
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E Hence, using the parallel-axis theorem for PV
| rectangles A and D, the calculations are as Am

100 mm d
_t_—4 — follows: Byl
400 mm A‘:‘J’J‘d’) il jglaad) s Aluaald) pIFE ARy yh pladdiuly
b D 5 A Oslibiicall (38 sall ) gaall
_ 1 5
100 mm I, =1+ Adf = E(l(}D)(BD(}) + (1(I"I})(3(]*[]'}(2(]{])2
= 1.425(10°) mm*
4.7100 mm 1
—— 600 mm Iy = Tyr + Ad: = 5(3{}[])('10{))3 + (100)(300)(250)
® = 1.90(10°) mm*
Rectangle B
y I, = .1—(600)('1 00)* = 0.05(10”) mm*
100mm; |__ 12
200 mm

I, = %(100)(6[]1]}3 = 1.80(10%) mm?*
A )
300 mm| e \

/ 250 mm Summation. The moment of inertia for the cross section are
thus:
= * : daal) Jals! Alaal) o6 Alldanl) p g6 psand
PR~ g S I, = 2[1.425(10%)] + 0.05(10°
200mm | D x [ ’ h( )] ' h( )
0 T = 2.90(10”) mm*
) I}, = 2['1.9[](1[]9)] - 1.80(1(}9)

= 5.60(10%) mm
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Determine the mc_)ment of inertia Determine the moment of inertia of the™
of the cross sectional area of composite area about the x axis and y
the beam about the centroidal x axis.
and y axes
o) daial) Aalocal Allkandf o 36 22 ) Alsal) 438 pal) dalucall Aaal) a3 2
x and A4Sl jglaall Jga JOAll el X and y sl Jga JSll
y

150 n‘1m__|_=15{lI mm_

200 mm 100 mm
50 mm:i X 100 mm
r L 3 x
200 mm 75 mm

= 300 mm —=

|
150 mm [ '150 mm

50 mm




Locate the centroid y of the cross
section and determine the moment of

inertia of the section about the x' axis.

Call Y (ol g} adallal) JE5 S pa day 22 g
Jsa adaiall Alldaal) oo a2 gl g (JSEM
X' Jolaadl

0.05 mj

W

1- Determine the distance x to the ?@
centroid of the beam’s cross-sectional
area, then find the moment of inertia
about the y’ axis.

2- Determine the moment of inertia of
the beam’s cross-sectional area about

the x' axis.

*—«— 120 mm——
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